import torch
import torch.nn as nn
import torch.nn.functional as F
from horizon_plugin_pytorch import set_march, March
set_march(March.NASH_M)
from horizon_plugin_pytorch.quantization import prepare, set_fake_quantize, FakeQuantState
from horizon_plugin_pytorch.quantization import QuantStub
from horizon_plugin_pytorch.quantization.hbdk4 import export
from horizon_plugin_pytorch.quantization.qconfig_template import calibration_8bit_weight_16bit_act_qconfig_setter, default_calibration_qconfig_setter
from horizon_plugin_pytorch.quantization.qconfig import get_qconfig, MSEObserver, MinMaxObserver
from horizon_plugin_pytorch.dtype import qint8, qint16
from torch.quantization import DeQuantStub
from hbdk4.compiler import statistics, save, load,visualize,compile,convert, hbm_perf
class SimpleConvNet(nn.Module):
def __init__(self):
super(SimpleConvNet, self).__init__()
# 第一个节点:输入通道 1,输出通道 16,卷积核 3x3
self.conv1 = nn.Conv2d(in_channels=1, out_channels=16, kernel_size=3, stride=1, padding=1)
# 后续添加一个池化层和一个全连接层
self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
self.fc = nn.Linear(16 * 14 * 14, 10) # 假设输入图像为 28x28
self.quant = QuantStub()
self.dequant = DeQuantStub()
def forward(self, x):
x = self.quant(x)
x = self.conv1(x) # 卷积层
x = F.relu(x) # 激活
x = self.pool(x) # 池化
x = x.view(x.size(0), -1) # Flatten
x = self.fc(x) # 全连接层输出
x = self.dequant(x)
return x
# 构造模型
model = SimpleConvNet()
# 构造一个假输入:batch_size=4,单通道,28x28 图像
example_input = torch.randn(4, 1, 28, 28)
output = model(example_input)
print("输出 shape:", output.shape) # torch.Size([4, 10])
calib_model = prepare(model.eval(), example_input,
qconfig_setter=(
default_calibration_qconfig_setter,
),
)
calib_model.eval()
set_fake_quantize(calib_model, FakeQuantState.CALIBRATION)
calib_model(example_input)
calib_model.eval()
set_fake_quantize(calib_model, FakeQuantState.VALIDATION)
calib_out = calib_model(example_input)
print("calib输出数据:", calib_out)
qat_bc = export(calib_model, example_input)
mean = [0.485]
std = [0.229]
func = qat_bc[0]
for input in func.flatten_inputs[::-1]:
split_inputs = input.insert_split(dim=0)
for split_input in reversed(split_inputs):
node = split_input.insert_transpose([0, 3, 1, 2])
node = node.insert_image_preprocess(mode="skip",
divisor=255,
mean=mean,
std=std,
is_signed=True)
node.insert_image_convert(mode="gray")
quantized_bc = convert(qat_bc, "nash-m")
hbir_func = quantized_bc.functions[0]
hbir_func.remove_io_op(op_types = ["Dequantize","Quantize"])
visualize(quantized_bc, "model_result/quantized_batch4.onnx")
statistics(quantized_bc)
params = {'jobs': 64, 'balance': 100, 'progress_bar': True,
'opt': 2,'debug': True, "advice": 0.0}
hbm_path="model_result/batch4-gray.hbm"
print("start to compile")
compile(quantized_bc, march="nash-m", path=hbm_path, **params)
print("end to compile")
评论