import numbers
import numpy as np
import paddle
from paddle.distribution import distribution
from paddle.fluid import framework as framework
class Laplace(distribution.Distribution):
r"""
Creates a Laplace distribution parameterized by :attr:`loc` and :attr:`scale`.
Mathematical details
The probability density function (pdf) is
.. math::
pdf(x; \mu, \sigma) = \frac{1}{2 * \sigma} * e^{\frac {-|x - \mu|}{\sigma}}
In the above equation:
* :math:`loc = \mu`: is the location parameter.
* :math:`scale = \sigma`: is the scale parameter.
Args:
loc (scalar|Tensor): The mean of the distribution.
scale (scalar|Tensor): The scale of the distribution.
name(str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Examples:
.. code-block:: python
import paddle
m = paddle.distribution.Laplace(paddle.to_tensor([0.0]), paddle.to_tensor([1.0]))
m.sample() # Laplace distributed with loc=0, scale=1
# Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True,
# [3.68546247])
"""
def __init__(self, loc, scale):
if not isinstance(loc, (numbers.Real, framework.Variable)):
raise TypeError(
f"Expected type of loc is Real|Variable, but got {type(loc)}")
if not isinstance(scale, (numbers.Real, framework.Variable)):
raise TypeError(
f"Expected type of scale is Real|Variable, but got {type(scale)}"
)
if isinstance(loc, numbers.Real):
loc = paddle.full(shape=(), fill_value=loc)
if isinstance(scale, numbers.Real):
scale = paddle.full(shape=(), fill_value=scale)
if (len(scale.shape) > 0 or len(loc.shape) > 0) and (loc.dtype
== scale.dtype):
self.loc, self.scale = paddle.broadcast_tensors([loc, scale])
else:
self.loc, self.scale = loc, scale
super(Laplace, self).__init__(self.loc.shape)
@property
def mean(self):
"""Mean of distribution.
Returns:
Tensor: The mean value.
"""
return self.loc
@property
def stddev(self):
"""Standard deviation.
The stddev is
.. math::
stddev = \sqrt{2} * \sigma
In the above equation:
* :math:`scale = \sigma`: is the scale parameter.
Returns:
Tensor: The std value.
"""
return (2**0.5) * self.scale
@property
def variance(self):
"""Variance of distribution.
The variance is
.. math::
variance = 2 * \sigma^2
In the above equation:
* :math:`scale = \sigma`: is the scale parameter.
Returns:
Tensor: The variance value.
"""
return self.stddev.pow(2)
def _validate_value(self, value):
"""Argument dimension check for distribution methods such as `log_prob`,
`cdf` and `icdf`.
Args:
value (Tensor|Scalar): The input value, which can be a scalar or a tensor.
Returns:
loc, scale, value: The broadcasted loc, scale and value, with the same dimension and data type.
"""
if isinstance(value, numbers.Real):
value = paddle.full(shape=(), fill_value=value)
if value.dtype != self.scale.dtype:
value = paddle.cast(value, self.scale.dtype)
if len(self.scale.shape) > 0 or len(self.loc.shape) > 0 or len(
value.shape) > 0:
loc, scale, value = paddle.broadcast_tensors(
[self.loc, self.scale, value])
else:
loc, scale = self.loc, self.scale
return loc, scale, value
def log_prob(self, value):
"""Log probability density/mass function.
The log_prob is
.. math::
log\_prob(value) = \frac{-log(2 * \sigma) - |value - \mu|}{\sigma}
In the above equation:
* :math:`loc = \mu`: is the location parameter.
* :math:`scale = \sigma`: is the scale parameter.
Args:
value (Tensor|Scalar): The input value, can be a scalar or a tensor.
Returns:
Tensor: The log probability, whose data type is same with value.
Examples:
.. code-block:: python
import paddle
m = paddle.distribution.Laplace(paddle.to_tensor([0.0]), paddle.to_tensor([1.0]))
value = paddle.to_tensor([0.1])
m.log_prob(value)
# Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True,
# [-0.79314721])
"""
loc, scale, value = self._validate_value(value)
log_scale = -paddle.log(2 * scale)
return (log_scale - paddle.abs(value - loc) / scale)
def entropy(self):
"""Entropy of Laplace distribution.
The entropy is:
.. math::
entropy() = 1 + log(2 * \sigma)
In the above equation:
* :math:`scale = \sigma`: is the scale parameter.
Returns:
The entropy of distribution.
Examples:
.. code-block:: python
import paddle
m = paddle.distribution.Laplace(paddle.to_tensor([0.0]), paddle.to_tensor([1.0]))
m.entropy()
# Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True,
# [1.69314718])
"""
return 1 + paddle.log(2 * self.scale)
def cdf(self, value):
"""Cumulative distribution function.
The cdf is
.. math::
cdf(value) = 0.5 - 0.5 * sign(value - \mu) * e^\frac{-|(\mu - \sigma)|}{\sigma}
In the above equation:
* :math:`loc = \mu`: is the location parameter.
* :math:`scale = \sigma`: is the scale parameter.
Args:
value (Tensor): The value to be evaluated.
Returns:
Tensor: The cumulative probability of value.
Examples:
.. code-block:: python
import paddle
m = paddle.distribution.Laplace(paddle.to_tensor([0.0]), paddle.to_tensor([1.0]))
value = paddle.to_tensor([0.1])
m.cdf(value)
# Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True,
# [0.54758132])
"""
loc, scale, value = self._validate_value(value)
iterm = (0.5 * (value - loc).sign() *
paddle.expm1(-(value - loc).abs() / scale))
return 0.5 - iterm
def icdf(self, value):
"""Inverse Cumulative distribution function.
The icdf is
.. math::
cdf^{-1}(value)= \mu - \sigma * sign(value - 0.5) * ln(1 - 2 * |value-0.5|)
In the above equation:
* :math:`loc = \mu`: is the location parameter.
* :math:`scale = \sigma`: is the scale parameter.
Args:
value (Tensor): The value to be evaluated.
Returns:
Tensor: The cumulative probability of value.
Examples:
.. code-block:: python
import paddle
m = paddle.distribution.Laplace(paddle.to_tensor([0.0]), paddle.to_tensor([1.0]))
value = paddle.to_tensor([0.1])
m.icdf(value)
# Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True,
# [-1.60943794])
"""
loc, scale, value = self._validate_value(value)
term = value - 0.5
return (loc - scale * (term).sign() * paddle.log1p(-2 * term.abs()))
def sample(self, shape=()):
"""Generate samples of the specified shape.
Args:
shape(tuple[int]): The shape of generated samples.
Returns:
Tensor: A sample tensor that fits the Laplace distribution.
Examples:
.. code-block:: python
import paddle
m = paddle.distribution.Laplace(paddle.to_tensor([0.0]), paddle.to_tensor([1.0]))
m.sample() # Laplace distributed with loc=0, scale=1
# Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True,
# [3.68546247])
"""
if not isinstance(shape, tuple):
raise TypeError(
f'Expected shape should be tuple[int], but got {type(shape)}')
with paddle.no_grad():
return self.rsample(shape)
def rsample(self, shape):
"""Reparameterized sample.
Args:
shape(tuple[int]): The shape of generated samples.
Returns:
Tensor: A sample tensor that fits the Laplace distribution.
Examples:
.. code-block:: python
import paddle
m = paddle.distribution.Laplace(paddle.to_tensor([0.0]), paddle.to_tensor([1.0]))
m.rsample((1,)) # Laplace distributed with loc=0, scale=1
# Tensor(shape=[1, 1], dtype=float32, place=Place(cpu), stop_gradient=True,
# [[0.04337667]])
"""
eps = self._get_eps()
shape = self._extend_shape(shape) or (1, )
uniform = paddle.uniform(shape=shape,
min=float(np.nextafter(-1, 1)) + eps / 2,
max=1. - eps / 2,
dtype=self.loc.dtype)
if len(self.scale.shape) == 0 and len(self.loc.shape) == 0:
loc, scale, uniform = paddle.broadcast_tensors(
[self.loc, self.scale, uniform])
else:
loc, scale = self.loc, self.scale
return (loc - scale * uniform.sign() * paddle.log1p(-uniform.abs()))
def _get_eps(self):
"""
Get the eps of certain data type.
Note:
Since paddle.finfo is temporarily unavailable, we
use hard-coding style to get eps value.
Returns:
Float: An eps value by different data types.
"""
eps = 1.19209e-07
if (self.loc.dtype == paddle.float64
or self.loc.dtype == paddle.complex128):
eps = 2.22045e-16
return eps
def kl_divergence(self, other):
"""Calculate the KL divergence KL(self || other) with two Laplace instances.
The kl_divergence between two Laplace distribution is
.. math::
KL\_divergence(\mu_0, \sigma_0; \mu_1, \sigma_1) = 0.5 (ratio^2 + (\frac{diff}{\sigma_1})^2 - 1 - 2 \ln {ratio})
.. math::
ratio = \frac{\sigma_0}{\sigma_1}
.. math::
diff = \mu_1 - \mu_0
In the above equation:
* :math:`loc = \mu`: is the location parameter of self.
* :math:`scale = \sigma`: is the scale parameter of self.
* :math:`loc = \mu_1`: is the location parameter of the reference Laplace distribution.
* :math:`scale = \sigma_1`: is the scale parameter of the reference Laplace distribution.
* :math:`ratio`: is the ratio between the two distribution.
* :math:`diff`: is the difference between the two distribution.
Args:
other (Laplace): An instance of Laplace.
Returns:
Tensor: The kl-divergence between two laplace distributions.
Examples:
.. code-block:: python
import paddle
m1 = paddle.distribution.Laplace(paddle.to_tensor([0.0]), paddle.to_tensor([1.0]))
m2 = paddle.distribution.Laplace(paddle.to_tensor([1.0]), paddle.to_tensor([0.5]))
m1.kl_divergence(m2)
# Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True,
# [1.04261160])
"""
var_ratio = other.scale / self.scale
t = paddle.abs(self.loc - other.loc)
term1 = ((self.scale * paddle.exp(-t / self.scale) + t) / other.scale)
term2 = paddle.log(var_ratio)
return term1 + term2 - 1
评论