金融时间序列预测方法合集:CNN、LSTM、随机森林、ARMA 预测价格(适用于时序问题)、相似度计算、各类评判指标绘图(数学建模科研适用)
金融时间序列预测方法合集:CNN、LSTM、随机森林、ARMA 预测价格(适用于时序问题)、相似度计算、各类评判指标绘图(数学建模科研适用)
1.使用 CNN 模型预测未来一天的股价涨跌-CNN(卷积神经网络)
使用 CNN 模型预测未来一天的股价涨跌
数据介绍
open 开盘价;close 收盘价;high 最高价
low 最低价;volume 交易量;label 涨/跌
训练规模
特征数量×5;天数×5 = 5 × 5
卷积过程
最大池化过程
代码流程
获取股票数据
数据归一化
数据预处理(划分成 5×5)
数据集分割(训练集和测试集)
定义卷积神经网络
评估预测模型
模型架构
码源链接见文末跳转
2.基于 LSTM 预测股票价格(长短期记忆神经网络)
基于 LSTM 预测股票价格(简易版)
数据集:
沪深 300 数据
数据特征:
只选用原始数据特征(开盘价、收盘价、最高价、最低价、交易量)
时间窗口:
15 天
代码流程:
读取数据->生成标签(下一天收盘价)->分割数据集->LSTM 模型预测->可视化->预测结果评估
LSTM 网络结构:
函数介绍:
1、generate_label 生成标签(下一天收盘价)
2、generate_model_data 分割数据集
3、evaluate 结果评估
4、lstm_model LSTM 预测模型
5、main 主函数(含可视化)
可视化输出:
训练集测试集拟合效果:
评估指标:
1、RMSE:55.93668241713906
2、MAE:44.51361108752264
3、MAPE:1.3418267677320612
4、AMAPE:1.3420384401412058
3.基于随机森林预测股票未来第 d+k 天相比于第 d 天的涨/跌 Random-Forest(随机森林)
基于随机森林预测股票未来第 d+k 天相比于第 d 天的涨/跌(简易版)
参考论文:Predicting the direction of stock market prices using random forest
论文流程:
算法流程:
获取金融数据->指数平滑->计算技术指标->数据归一化->随机森林模型预测
函数介绍:
1、get_stock_data 通过 Tushare 获取原始股票数据
2、exponential_smoothing、em_stock_data 股票指数平滑处理
3、calc_technical_indicators 计算常用的技术指标
4、normalization 数据归一化处理并分割数据集
5、random_forest_model 随机森林模型并返回准确率和特征排名
决策树:
(1)ID3: 基于信息增益大的数据特征划分层次
(2)C4.5: 基于信息增益比=信息增益/特征熵划分层次
(3)CART: 基于 Gini 划分层次
基于 Bagging 集成学习算法,有多棵决策树组成(通常是 CART 决策树),其主要特性有:
(1)样本和特征随机采样
(2)适用于数据维度大的数据集
(3)对异常样本点不敏感
(4)可以并行训练(决策树间独立同分布)
算法输出:
注意:算法仅用于参考学习交流,由于是研一时期独立编写(以后可能进一步完善),所公开的代码并非足够完善和严谨,如以下问题:
模型涉及参数未寻优(可考虑网格搜索、随机搜索、贝叶斯优化)
指数平滑因子
随机森林模型树数量、决策树深度、叶子节点最小样本数等
未来第 k 天的选择
归一化方法
随机森林模型其实本身不需要数据归一化(如算法对数据集进行归一化也需要考虑对训练集、验证集、测试集独立归一化)
股票预测考虑的数据特征:
原始数据特征(open/close/high/low)
技术指标(Technical indicator)
企业公开公告信息
企业未来规划
企业年度报表
社会舆论
股民情绪
国家政策
股票间影响等
4.模型输出结果
5.随机森林参数优化参考表
4.基于 ARMA 预测股票价格-ARMA(自回归滑动平均模型)
基于 ARMA 预测股票价格(5 分钟数据)
1.检测数据平稳化
2.差分/对数等数据处理
3.使用 ARMA 模型预测
备注:部分代码参考网络资源
5.金融时间序列相似度计算
5.1.皮尔逊相关系数( pearson_correlation_coefficient)
1.1 由于不同股票价格范围差距过大,在进行股票时间序列相似度匹配过程中通常考虑对数差处理,其公式如下所示:
1.2 经过对数差处理后的金融时间序列可表示:
1.3 皮尔逊相关系数计算公式:
1.4 结果
1.4.1 相关性较强
1.4.2 相关性较弱
5.2.动态时间规整(dynamic_time_wrapping)
2.1 计算两个金融时间序列的时间点对应数据的欧氏距离
2.2 更新时间点对应数据的距离
2.3 动态时间规整距离
2.4 伪代码
2.5 动态时间规整距离输出图举例
2.6 动态时间规整最优匹配对齐
2.7 结果
2.7.1 动态时间规整距离较短
2.7.1 动态时间规整距离较长
5.3.余弦相似度(cosine similarity)
6.金融时间序列(其他)
6.1.计算特征方差(calc_variance.py)
6.2.绘制混淆矩阵(confuse_matrix.py)
6.3.特征间相关性(corr.py)
6.4.绘制预测模型性能——柱状图(result_bar.py)
6.5.绘制预测模型性能——折线图(result_plot.py)
6.6.相似金融时间序列绘制(similarity_time_series.py)
6.7.计算分类的评价指标(evaluation.py)
(1)准确率 Accuracy
(2)精确率 Precision
(3)召回率 Recall
(4)特异度 Specificity
(5)综合评价指标 F-measure
(6)马修斯相关系数 MCC(Matthews Correlation Coefficient)
6.8.窗口数据归一化(normalization.py)
(1)z-score 标准化(std)
(2)最大最小归一化(maxmin)
6.9.股票数据下载(download.py)
(1)tushare 接口
(2)JQdata 接口
6.10.roc 曲线绘制(roc.py)
6.11.混淆矩阵绘制(confusion_matrix.py)
6.12.卡尔曼滤波(kalmanfilter.py)
6.13.蜡烛图 (candle.py)
码源链接见文末跳转
更多优质内容请关注公号 &知乎:汀丶人工智能;会提供一些相关的资源和优质文章,免费获取阅读。
版权声明: 本文为 InfoQ 作者【汀丶人工智能】的原创文章。
原文链接:【http://xie.infoq.cn/article/844efd924731bb62bcc0dbf2a】。
本文遵守【CC-BY 4.0】协议,转载请保留原文出处及本版权声明。
评论