飞机机翼弹性不足、桥梁晃动频率过高,重要的流固耦合 FSI 如何用技术解决

背景介绍
最初的流固耦合 FSI(Fluid-Solid Interaction)专指研究流体载荷对弹性结构的影响,例如飞机机翼气动弹性问题,船舶螺旋桨的水弹性问题,核反应堆燃料棒的涡激振动问题等等。在数值仿真领域 FSI 概念扩展到一般性的 CFD 模型和 FEA 模型的数据交换问题。
FSI 真实案例:大桥与风场组成了耦合系统,大风产生了一定频率的卡门涡脱落,这个频率与耦合系统中的结构固有频率相近,使系统发生了共振,大桥剧烈晃动直至崩塌。

大桥剧烈晃动直至崩塌
HyperWorks 的流体求解器 AcuSolve 流固耦合分析分为四种情况:
分析稳态的流场压力和温度场对固体变形的影响,也叫 TFSI (Thermal-FSI)属于单向耦合;
分析流体动载荷引起的固体振动现象,也叫 P-FSI (Practical FSI),属于单向耦合;
瞬态流动引起固体大变形,并反馈给流场,也叫 DC-FSI (Direct Coupling FSI),属于双向耦合。
固体本身的变形量很小,可以认为是刚体,但是整体产生比较大的位移,可以采用 CFD 耦合 MBD 多体动力学分析,也属于双向耦合。
以上几种分析都可以在 SimLab 模块中完成,流固交界面的耦合数据在后台传递,无需用户编辑脚本。
TFSI 模型的计算代价最小,通常用于流体静载荷或温度梯度引起的固体小变形,例如汽车排气管的热应力,发动机水套的热应力,车灯的热应力等等场景。
排气歧管的 TFSI 分析案例
AcuSolve 模型的管路入口为高温高压气体,管路出口为大气压和环境温度,管路外壁面是自然对流散热边界。AcuSolve 结果传递给求解器 OptiStruct 再分析管路的热应力和变形。


AcuSolve 模型的边界
OptiStruct 模型的约束


AcuSolve 分析温度场
OptiStruct 分析变形量
SimLab 发动机壳体的 TFSI 分析案例

P-FSI 计算代价中等。首先进行 OptiStruct 的模态分析,将模态频率和振型(*op2 文件)传递给 AcuSolve,模态向量从固体网格映射到流体网格的湿表面上。接着打开 ALE 动网格开关,Moving Mesh → Computed 求解湿表面的变形。需要注意的是:P-FSI 固体变形必须在线性范围内,无法考察固体内的真实应力,但是可以评估结构的疲劳水平。
P-FSI 案例
海洋工程上采用的圆柱形断面结构物,在洋流冲刷下产生周期性脱落的旋涡,由此产生脉动压力,引发结构的周期性振动,这种规律性的管体振动反过来又会改变旋涡的频率。如果卡门涡频率和结构模态吻合,振幅会达到最大。这种现象也称为“涡激振动”(Vortex-Induced Vibration :VIV)。

安装了扰流片的海工结构

AcuSolve 的 ALE 动网格


圆形截面管振动幅度较大
安装扰流片改变了卡门涡频率,从而减少了结构振幅
射流主动控制技术
除了安装扰流片,也可以在结构的表面安装射流装置,同样可以改变卡门涡的频率,从而破坏 VIV 的“吻合”效应。

圆柱绕流的卡门涡



无射流控制
有射流控制

流体侧向力的时间历程曲线
无射流控制(蓝色),有射流控制(红色)
大型的结构或建筑也要考虑风载荷的激励。一方面改变风涡脱落频率,或者通过安装加强筋,配重等手段改变结构的固有频率,避免严重的 VIV 现象。
案例:风力发电机的叶片在强风下产生显著变形,不仅会改变叶片的空气动力学性能,如果翼尖变形量过大,甚至会影响塔架安全。

风力发电机风洞试验


OptiStruct 分析叶片的振动形式:摆振和扭转

2 叶片风力机的外流场和翼尖的变形曲线
案例:100 米长风力机叶片的 P-FSI 分析

OptiStruct 叶片模态分析

AcuSolve 计算叶片外流场

AcuSolve 计算叶片的变形
案例:大型天线的风载荷分析(静载荷和风振)


大型天线的风振 FSI 分析
案例:路牌的风振分析

案例:赛车尾翼的风振分析



除了 VIV, 还有一类现象,叫做 VIM (Vortex Induced Motion),分析刚体在流体载荷下的运动规律。
VIM 案例:复杂的圆柱绕流问题
AcuSolve 输出流体载荷,更新固体的位移,MotionSolve 接受流体载荷并求解固体速度/加速度/位移。



VIM 案例:AcuSolve 模拟水池晃动,耦合连杆机构运动
MotionSolve 的湿表面必须是刚体,其余部分可以是柔性体,分析结构应力应变。

VIM 案例:海工结构在洋流下的运动

DC-FSI 同时计算 AcuSolve 和 OptiStruct 模型,在相同的时间步交换数据,计算代价最大。可以考虑固体的大变形和材料非线性,并评估固体变形的真实应力。


DC-FSI 原理图
隔膜阀 DC-FSI 分析案例
隔膜阀置于轴向流道,隔膜材料能承受较大变形, 在大流量下隔膜产生形变,逐步减小过流面积,起到自动节流的效果。

隔膜阀的瞬态流场

隔膜阀的 Von Mises 应力

隔膜阀中心点位移
总 结
首先用户判断 FSI 问题属于哪一类,采取合理假设,降低计算代价。
流固交界面的网格不要求节点一一匹配,但是如果流体侧和固体侧的网格尺寸差太多,可能会造成数据映射的误差。
P-FSI 和 DC-FSI 的流体都要求是瞬态计算,估算时间步长,既要满足振动最高频率的要求,还要满足一个时间步内网格变形量不能过大(否则造成 CFD 网格负体积而发散)。
避免在一个时间步内传递很大的力给 OptiStruct,或反之,在一个时间步内传递很大的位移给 AcuSolve。可以通过增加一个 Multiplier 的方法分步加载,提高 FSI 耦合计算的收敛稳定性。
HyperWorks 的 FSI 计算可以跨平台,比如把 AcuSolve 计算放在 Linux 的集群上,而 OptiStruct 的计算放在 Windows 的台式机,通过 TCP 端口进行网络通讯。
关于 Altair 澳汰尔
Altair(纳斯达克股票代码:ALTR)是计算智能领域的全球领导者之一,在仿真、高性能计算 (HPC) 和人工智能等领域提供软件和云解决方案。Altair 能使跨越广泛行业的企业们在连接的世界中更高效地竞争,并创造更可持续的未来。
公司总部位于美国密歇根州,服务于 16000 多家全球企业,应用行业包括汽车、消费电子、航空航天、能源、机车车辆、造船、国防军工、金融、零售等。
欲了解更多信息,欢迎关注公众号:Altair 澳汰尔
评论