写点什么

【scikit-learn 基础】--『数据加载』之样本生成器

作者:EquatorCoco
  • 2023-12-08
    福建
  • 本文字数:2121 字

    阅读完需:约 7 分钟

除了内置的数据集,scikit-learn还提供了随机样本的生成器。通过这些生成器函数,可以生成具有特定特性和分布的随机数据集,以帮助进行机器学习算法的研究、测试和比较。


目前,scikit-learn库(v1.3.0版)中有 20 个不同的生成样本的函数。本篇重点介绍其中几个具有代表性的函数。


1. 分类聚类数据样本


分类和聚类是机器学习中使用频率最高的算法,创建各种相关的样本数据,能够帮助我们更好的试验算法。


1.1. make_blobs


这个函数通常用于可视化分类器的学习过程,它生成由聚类组成的非线性数据集。


import matplotlib.pyplot as pltfrom sklearn.datasets import make_blobs
X, Y = make_blobs(n_samples=1000, centers=5)plt.scatter(X[:, 0], X[:, 1], marker="o", c=Y, s=25)
plt.show()
复制代码



上面的示例生成了 1000 个点的数据,分为 5 个类别。


make_blobs的主要参数包括:


  • n_samples:生成的样本数。

  • n_features:每个样本的特征数。通常为 2,表示我们生成的是二维数据。

  • centers:聚类的数量。即生成的样本会被分为多少类。

  • cluster_std:每个聚类的标准差。这决定了聚类的形状和大小。

  • shuffle:是否在生成数据后打乱样本。

  • random_state:随机数生成器的种子。这确保了每次运行代码时生成的数据集都是一样的。


1.2. make_classification


这是一个用于生成复杂二维数据的函数,通常用于可视化分类器的学习过程或者测试机器学习算法的性能。


import matplotlib.pyplot as pltfrom sklearn.datasets import make_classification
X, Y = make_classification(n_samples=100, n_classes=4, n_clusters_per_class=1)plt.scatter(X[:, 0], X[:, 1], marker="o", c=Y, s=25)
plt.show()
复制代码



可以看出它生成的各类数据交织在一起,很难做线性的分类。


make_classification的主要参数包括:


  • n_samples:生成的样本数。

  • n_features:每个样本的特征数。这个参数决定了生成的数据集的维度。

  • n_informative:具有信息量的特征的数量。这个参数决定了特征集中的特征有多少是有助于分类的。

  • n_redundant:冗余特征的数量。这个参数决定了特征集中的特征有多少是重复或者没有信息的。

  • random_state:随机数生成器的种子。这确保了每次运行代码时生成的数据集都是一样的。


1.3. make_moons


和函数名称所表达的一样,它是一个用于生成形状类似于月牙的数据集的函数,通常用于可视化分类器的学习过程或者测试机器学习算法的性能。


from sklearn.datasets import make_moons
fig, ax = plt.subplots(1, 3)fig.set_size_inches(9, 3)
X, Y = make_moons(noise=0.01, n_samples=1000)ax[0].scatter(X[:, 0], X[:, 1], marker="o", c=Y, s=25)ax[0].set_title("noise=0.01")
X, Y = make_moons(noise=0.05, n_samples=1000)ax[1].scatter(X[:, 0], X[:, 1], marker="o", c=Y, s=25)ax[1].set_title("noise=0.05")
X, Y = make_moons(noise=0.5, n_samples=1000)ax[2].scatter(X[:, 0], X[:, 1], marker="o", c=Y, s=25)ax[2].set_title("noise=0.5")
plt.show()
复制代码


noise越小,数据的分类越明显。


make_moons的主要参数包括:


  • n_samples:生成的样本数。

  • noise:在数据集中添加的噪声的标准差。这个参数决定了月牙的噪声程度。

  • random_state:随机数生成器的种子。这确保了每次运行代码时生成的数据集都是一样的。


2. 回归数据样本


除了分类聚类回归是机器学习的另一个重要方向。scikit-learn同样也提供了创建回归数据样本的函数。


from sklearn.datasets import make_regression
fig, ax = plt.subplots(1, 3)fig.set_size_inches(9, 3)
X, y = make_regression(n_samples=100, n_features=1, noise=20)ax[0].scatter(X[:, 0], y, marker="o")ax[0].set_title("noise=20")
X, y = make_regression(n_samples=100, n_features=1, noise=10)ax[1].scatter(X[:, 0], y, marker="o")ax[1].set_title("noise=10")
X, y = make_regression(n_samples=100, n_features=1, noise=1)ax[2].scatter(X[:, 0], y, marker="o")ax[2].set_title("noise=1")
plt.show()
复制代码



通过调节noise参数,可以创建不同精确度的回归数据。


make_regression的主要参数包括:


  • n_samples:生成的样本数。

  • n_features:每个样本的特征数。通常为一个较小的值,表示我们生成的是一维数据。

  • noise:噪音的大小。它为数据添加一些随机噪声,以使结果更接近现实情况。


3. 流形数据样本


所谓流形数据,就是 S 形或者瑞士卷那样旋转的数据,可以用来测试更复杂的分类模型的效果。比如下面的make_s_curve函数,就可以创建 S 形的数据:


from sklearn.datasets import make_s_curve
X, Y = make_s_curve(n_samples=2000)
fig, ax = plt.subplots(subplot_kw={"projection": "3d"})fig.set_size_inches((8, 8))ax.scatter(X[:, 0], X[:, 1], X[:, 2], c=Y, s=60, alpha=0.8)ax.view_init(azim=-60, elev=9)plt.show()
复制代码



4. 总结


本文介绍的生成样本数据的函数只是scikit-learn库中各种生成器的一部分,还有很多种其他的生成器函数可以生成更加复杂的样本数据。


所有的生成器函数请参考文档:https://scikit-learn.org/stable/modules/classes.html#samples-generator


文章转载自:wang_yb

原文链接:https://www.cnblogs.com/wang_yb/p/17884401.html

用户头像

EquatorCoco

关注

还未添加个人签名 2023-06-19 加入

还未添加个人简介

评论

发布
暂无评论
【scikit-learn基础】--『数据加载』之样本生成器_Python_EquatorCoco_InfoQ写作社区