写点什么

如何在 c++ 侧编译运行一个 aclnn(AOL)算子?

作者:zjun
  • 2024-12-18
    上海
  • 本文字数:5381 字

    阅读完需:约 18 分钟

如何在c++侧编译运行一个aclnn(AOL)算子?

1 AOL 算子库

CANN(Compute Architecture for Neural Networks)提供了算子加速库(Ascend Operator Library,简称 AOL)。该库提供了一系列丰富且深度优化过的高性能算子 API,更亲和昇腾 AI 处理器,调用流程如图 1 所示。开发者可直接调用算子库 API 使能模型创新与应用,以进一步提升开发效率和获取极致模型性能。



单算子 API 执行的算子接口一般定义为“两段式接口”,以 NN 算子接口定义为例:


aclnnStatus aclnnXxxGetWorkspaceSize(const aclTensor *src, ..., aclTensor *out, ..., uint64_t *workspaceSize, aclOpExecutor **executor);aclnnStatus aclnnXxx(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, aclrtStream stream);
复制代码


其中 aclnnXxxGetWorkspaceSize 为第一段接口,主要用于计算本次 API 调用计算过程中需要多少的 workspace 内存。获取到本次 API 计算需要的 workspace 大小后,按照 workspaceSize 大小申请 AI 处理器内存,然后调用第二段接口 aclnnXxx。说明:


  • workspace 是指除输入/输出外,API 在 AI 处理器上完成计算所需要的临时内存。

  • 第二段接口 aclnnXxx(...)不能重复调用,如下调用方式会出现异常:aclnnXxxGetWorkspaceSize(...)aclnnXxx(...)aclnnXxx(...)

2 具体示例

2.1 文件准备

可以从官网获得一个算子的使用示例,如下算子是 aclnnAdd:


aclnnAdd&aclnnInplaceAdd-单算子接口-NN类算子接口-单算子API执行-单算子执行-AscendCL API(C&C++)-应用开发接口-CANN商用版8.0.RC2.2开发文档-昇腾社区


#include <iostream>#include <vector>#include "acl/acl.h"#include "aclnnop/aclnn_add.h"
#define CHECK_RET(cond, return_expr) \ do { \ if (!(cond)) { \ return_expr; \ } \ } while (0)
#define LOG_PRINT(message, ...) \ do { \ printf(message, ##__VA_ARGS__); \ } while (0)
int64_t GetShapeSize(const std::vector<int64_t>& shape) { int64_t shapeSize = 1; for (auto i : shape) { shapeSize *= i; } return shapeSize;}
int Init(int32_t deviceId, aclrtStream* stream) { // 固定写法,AscendCL初始化 auto ret = aclInit(nullptr); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret); ret = aclrtSetDevice(deviceId); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret); ret = aclrtCreateStream(stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret); return 0;}
template <typename T>int CreateAclTensor(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr, aclDataType dataType, aclTensor** tensor) { auto size = GetShapeSize(shape) * sizeof(T); // 调用aclrtMalloc申请device侧内存 auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret); // 调用aclrtMemcpy将host侧数据拷贝到device侧内存上 ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);
// 计算连续tensor的strides std::vector<int64_t> strides(shape.size(), 1); for (int64_t i = shape.size() - 2; i >= 0; i--) { strides[i] = shape[i + 1] * strides[i + 1]; }
// 调用aclCreateTensor接口创建aclTensor *tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND, shape.data(), shape.size(), *deviceAddr); return 0;}
int main() { // 1. (固定写法)device/stream初始化,参考AscendCL对外接口列表 // 根据自己的实际device填写deviceId int32_t deviceId = 0; aclrtStream stream; auto ret = Init(deviceId, &stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret);
// 2. 构造输入与输出,需要根据API的接口自定义构造 std::vector<int64_t> selfShape = {4, 2}; std::vector<int64_t> otherShape = {4, 2}; std::vector<int64_t> outShape = {4, 2}; void* selfDeviceAddr = nullptr; void* otherDeviceAddr = nullptr; void* outDeviceAddr = nullptr; aclTensor* self = nullptr; aclTensor* other = nullptr; aclScalar* alpha = nullptr; aclTensor* out = nullptr; std::vector<float> selfHostData = {0, 1, 2, 3, 4, 5, 6, 7}; std::vector<float> otherHostData = {1, 1, 1, 2, 2, 2, 3, 3}; std::vector<float> outHostData(8, 0); float alphaValue = 1.2f; // 创建self aclTensor ret = CreateAclTensor(selfHostData, selfShape, &selfDeviceAddr, aclDataType::ACL_FLOAT, &self); CHECK_RET(ret == ACL_SUCCESS, return ret); // 创建other aclTensor ret = CreateAclTensor(otherHostData, otherShape, &otherDeviceAddr, aclDataType::ACL_FLOAT, &other); CHECK_RET(ret == ACL_SUCCESS, return ret); // 创建alpha aclScalar alpha = aclCreateScalar(&alphaValue, aclDataType::ACL_FLOAT); CHECK_RET(alpha != nullptr, return ret); // 创建out aclTensor ret = CreateAclTensor(outHostData, outShape, &outDeviceAddr, aclDataType::ACL_FLOAT, &out); CHECK_RET(ret == ACL_SUCCESS, return ret);
uint64_t workspaceSize = 0; aclOpExecutor* executor; // aclnnAdd接口调用示例 // 3. 调用CANN算子库API // 调用aclnnAdd第一段接口 ret = aclnnAddGetWorkspaceSize(self, other, alpha, out, &workspaceSize, &executor); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnAddGetWorkspaceSize failed. ERROR: %d\n", ret); return ret); // 根据第一段接口计算出的workspaceSize申请device内存 void* workspaceAddr = nullptr; if (workspaceSize > 0) { ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret); } // 调用aclnnAdd第二段接口 ret = aclnnAdd(workspaceAddr, workspaceSize, executor, stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnAdd failed. ERROR: %d\n", ret); return ret);
// 4. (固定写法)同步等待任务执行结束 ret = aclrtSynchronizeStream(stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);
// 5. 获取输出的值,将device侧内存上的结果拷贝至host侧,需要根据具体API的接口定义修改 auto size = GetShapeSize(outShape); std::vector<float> resultData(size, 0); ret = aclrtMemcpy(resultData.data(), resultData.size() * sizeof(resultData[0]), outDeviceAddr, size * sizeof(resultData[0]), ACL_MEMCPY_DEVICE_TO_HOST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret); for (int64_t i = 0; i < size; i++) { LOG_PRINT("result[%ld] is: %f\n", i, resultData[i]); }
// aclnnInplaceAdd接口调用示例 // 3. 调用CANN算子库API LOG_PRINT("\ntest aclnnInplaceAdd\n"); // 调用aclnnInplaceAdd第一段接口 ret = aclnnInplaceAddGetWorkspaceSize(self, other, alpha, &workspaceSize, &executor); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnInplaceAddGetWorkspaceSize failed. ERROR: %d\n", ret); return ret); // 根据第一段接口计算出的workspaceSize申请device内存 if (workspaceSize > 0) { ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret); } // 调用aclnnInplaceAdd第二段接口 ret = aclnnInplaceAdd(workspaceAddr, workspaceSize, executor, stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnInplaceAdd failed. ERROR: %d\n", ret); return ret);
// 4. (固定写法)同步等待任务执行结束 ret = aclrtSynchronizeStream(stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);
// 5. 获取输出的值,将device侧内存上的结果拷贝至host侧,需要根据具体API的接口定义修改 ret = aclrtMemcpy(resultData.data(), resultData.size() * sizeof(resultData[0]), selfDeviceAddr, size * sizeof(resultData[0]), ACL_MEMCPY_DEVICE_TO_HOST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret); for (int64_t i = 0; i < size; i++) { LOG_PRINT("result[%ld] is: %f\n", i, resultData[i]); } // 6. 释放aclTensor和aclScalar,需要根据具体API的接口定义修改 aclDestroyTensor(self); aclDestroyTensor(other); aclDestroyScalar(alpha); aclDestroyTensor(out);
// 7. 释放Device资源,需要根据具体API的接口定义修改 aclrtFree(selfDeviceAddr); aclrtFree(otherDeviceAddr); aclrtFree(outDeviceAddr); if (workspaceSize > 0) { aclrtFree(workspaceAddr); } aclrtDestroyStream(stream); aclrtResetDevice(deviceId); aclFinalize();
return 0;}
复制代码


如果将该文件命名为 test_add.cpp,那么接下来写它的 CMakeLists 文件,可从如下模板中修改。


重要内容修改:


  • add_executable 中的文件名称,比如当前要改成 test_add.cpp


# Copyright (c) Huawei Technologies Co., Ltd. 2019. All rights reserved.
# CMake lowest version requirementcmake_minimum_required(VERSION 3.14)
# 设置工程名project(ACLNN_EXAMPLE)
# Compile optionsadd_compile_options(-std=c++11)
# 设置编译选项set(CMAKE_RUNTIME_OUTPUT_DIRECTORY "./bin") set(CMAKE_CXX_FLAGS_DEBUG "-fPIC -O0 -g -Wall")set(CMAKE_CXX_FLAGS_RELEASE "-fPIC -O2 -Wall")
# 设置可执行文件名(如opapi_test),并指定待运行算子文件*.cpp所在目录add_executable(opapi_test test_add.cpp)
# 设置ASCEND_PATH(CANN软件包目录,请根据实际路径修改)和INCLUDE_BASE_DIR(头文件目录)if(NOT "$ENV{ASCEND_CUSTOM_PATH}" STREQUAL "") set(ASCEND_PATH $ENV{ASCEND_CUSTOM_PATH})else() set(ASCEND_PATH "/usr/local/Ascend/ascend-toolkit/latest")endif()set(INCLUDE_BASE_DIR "${ASCEND_PATH}/include")include_directories( ${INCLUDE_BASE_DIR} ${INCLUDE_BASE_DIR}/aclnn)
# 设置链接的库文件路径target_link_libraries(opapi_test PRIVATE ${ASCEND_PATH}/lib64/libascendcl.so ${ASCEND_PATH}/lib64/libnnopbase.so ${ASCEND_PATH}/lib64/libopapi.so)

# 可执行文件在CMakeLists文件所在目录的bin目录下install(TARGETS opapi_test DESTINATION ${CMAKE_RUNTIME_OUTPUT_DIRECTORY})
复制代码

2.2 编译运行

1、进入 CMakeLists.txt 所在目录,执行如下命令,新建 build 目录存放生成的编译文件。执行:


source ${install_path}/set_env.sh。#install_path为CANN的安装目录,一般为/usr/local/Ascend/ascend-toolkit/latest
复制代码


2、进入 build 目录,执行 cmake 命令编译,再执行 make 命令生成可执行文件。


cd buildcmake ../ -DCMAKE_CXX_COMPILER=g++ -DCMAKE_SKIP_RPATH=TRUEmake
复制代码


编译成功后,会在 build 目录的 bin 文件夹下生成 opapi_test 可执行文件。


3、进入 bin 目录,运行可执行文件 opapi_test。


cd bin./opapi_test
复制代码


以 Add 算子的运行结果为例,运行后的结果示例如下:


result[0] is: 1.200000result[1] is: 2.200000result[2] is: 3.200000result[3] is: 5.400000result[4] is: 6.400000result[5] is: 7.400000result[6] is: 9.600000result[7] is: 10.600000
复制代码


可参考官网:


编译与运行样例-NN类算子接口-单算子API执行-单算子执行-AscendCL API(C&C++)-应用开发接口-API参考-CANN商用版8.0.RC2.2开发文档-昇腾社区 (hiascend.com)

用户头像

zjun

关注

还未添加个人签名 2020-03-06 加入

还未添加个人简介

评论

发布
暂无评论
如何在c++侧编译运行一个aclnn(AOL)算子?_算子_zjun_InfoQ写作社区