写点什么

新老用户看过来~最实用的 Milvus 迁移手册来啦!

作者:Zilliz
  • 2023-09-19
    北京
  • 本文字数:5733 字

    阅读完需:约 19 分钟

毫无疑问,Milvus 已经成为全球诸多用户构建生产环境时必不可少的向量数据库。


近期,Milvus 发布了全新升级的 Milvus 2.3 版本,内核引擎加速的同时也加入了诸如支持 GPU 这样实用且强大的特性。可以说,以 Milvus 2.3 为代表的 Milvus 2.x 版本无论在功能还是性能上都远超 Milvus 1.x 版本。因此,有很多新老用户反馈,想要将存量向量数据从其他数据源迁移到 Milvus2.x 中,为了解决这一需求,Milvus-migration 项目应运而生。


读完本文,用户可以快速掌握 Milvus-migration 的功能特点和使用方法。(小声打个广告:Zilliz 云平台提供了更方便的一键迁移功能)

01.功能概述

目前迁移支持的数据源有:


  • Milvus 1.x 到 Milvus 2.x 迁移

  • Elasticsearch 到 Milvus 2.x 数据迁移

  • Faiss 到 Milvus 2.x 数据迁移 (Beta 版本)

  • 支持包括命令行和 Restful API 的多种交互方式

  • 支持多种文件形式的迁移 (本地文件、S3、OSS、GCP)

  • 支持 Elasticsearch 7.x 以上版本、自定义迁移字段构造表结构

02.设计思路

总体架构

编程语言

Milvus-migration 使用 go 语言实现.

交互方式

命令行

命令行是最简便直接的使用方式,Milvus-migration 基于 cobra 框架实现了命令行。

Restful Api

Milvus-Migration 还提供 Restful API,便于工具服务化,并提供 Swagger UI。

Go module

Milvus-Migration 还可以作为 go module,集成到其他工具之中。

实现原理

对于迁移 Milvus 1.x 和 Faiss 数据,主要会对原始数据文件内容进行解析,编辑转换成 Milvus 2.x 对应的数据存储格式,然后通过调用 Milvus sdk 的 bulkInsert 将数据写入,整个数据解析转换过程为流式处理,处理的数据文件大小理论上只受磁盘空间大小限制。数据文件支持存放在 Local File、S3、OSS、GCP 和 Minio。


对于迁移 Elasticsearch 数据,不同之处数据获取不是从文件,而是通过 ES 提供的 scroll api 能力 将 ES 数据依次遍历获取,从而解析转成 Milvus 2.x 存储格式文件,同样是调用 bulkInsert 将数据写入。除了对存储在 ES dense_vector 类型的向量进行迁移,也支持 ES 其他字段的迁移,目前支持的其他字段类型有:long、integer、short、boolean、keyword、text、double。

接口定义

/start - 开启一个迁移 job(相当于 dump 和 load 的结合,目前只支持 ES 迁移)


/dump - 开启一个迁移 dump job (将 source 数据 写入到 target 所在的存储介质中)


/load - 开启一个迁移 load job(将写入 target 存储介质的数据 写入到 Milvus 2.x)


/get_job - 查看 job 运行结果


详情可参考 https://github.com/zilliztech/milvus-migration/blob/main/server/server.go

03.功能演示

下面使用项目中的例子来讲解 Milvus-migration 的使用方法。示例可在项目 README.md 中找到。

Elasticsearch -> Milvus 2.x

1. 准备 ES 数据

要迁移 ES 数据,前提假设您已经拥有属于自己的 es Server(自建、ElasticCloud、阿里云 ES 等),向量数据存储在 dense_vector,以及其他字段在 index 中,index mapping 形式如:


2. 编译打包

首先下载迁移项目源码:https://github.com/zilliztech/milvus-migration


执行: go get & go build,编译完成会在当前路径下产生可执行文件: milvus-migration。

3. 配置 migration.ymal config

开始迁移之前, 还需要准备迁移配置文件:包含数据的 source、target 数据等信息,内容示例如下:



dumper: worker: workMode: elasticsearch ------ 工作模式:elasticsearch reader: bufferSize: 2500 --------- 从es每次批量获取的数量meta: mode: config -------- 固定写法,其他数据源迁移会有其他不同值 index: test_index -------- es index fields: -------- 需要同步的es字段有哪些: - name: id -------- es 字段名 pk: true -------- pk=true,表示这个字段作为milvus的主键, 没设置情况下默认会采用es document _id作为主键 type: long - name: other_field maxLen: 60 ------- 对应milvus VarChar字段类型的maxLen, 对于varchar类型不设置maxLen则默认最大值:65535 type: keyword - name: data type: dense_vector ------- 向量字段,对应milvus的 field_vector类型, 必须迁移有dense_vector的字段 dims: 512 milvus: ------- 这部分配置非必填,设置生成的milvus表的属性,为空则按默认值 collection: "rename_index_test" --- 表名,为空则 esIndex作为表名 closeDynamicField: false --- 为空默认为false(开启动态列功能) consistencyLevel: Eventually --- 一致性,为空按 milvus的默认级别 shardNum: 1 --- 分片数量,为空默认为2
source: ------- es server连接配置信息,支持 serviceToken,fingerprint,cloudId/apiKey,user/pwd,ca.crt 等方式连接/认证 es: urls: - http://localhost:9200 username: xxx password: xxxtarget: ------ 迁移到目标mivlus的bucket信息 mode: remote remote: outputDir: outputPath/migration/test1 cloud: aws region: us-west-2 bucket: xxx useIAM: true checkBucket: false milvus2x: endpoint: {yourMilvusAddress}:{port} username: ****** password: ******
复制代码


关于配置文件更加详细的介绍,请参考项目 README.md。

4. 执行迁移 job

将配置文件放入任意文件目录下,通过执行命令方式开启迁移任务:


./milvus-migration start --config=/{YourConfigFilePath}/migration.yaml


观察日志输出,当出现类似如下日志表示迁移成功:


[task/load_base_task.go:94] ["[LoadTasker] Dec Task Processing-------------->"] [Count=0] [fileName=testfiles/output/zwh/migration/test_mul_field4/data_1_1.json] [taskId=442665677354739304][task/load_base_task.go:76] ["[LoadTasker] Progress Task --------------->"] [fileName=testfiles/output/zwh/migration/test_mul_field4/data_1_1.json] [taskId=442665677354739304][dbclient/cus_field_milvus2x.go:86] ["[Milvus2x] begin to ShowCollectionRows"][loader/cus_milvus2x_loader.go:66] ["[Loader] Static: "] [collection=test_mul_field4_rename1] [beforeCount=50000] [afterCount=100000] [increase=50000][loader/cus_milvus2x_loader.go:66] ["[Loader] Static Total"] ["Total Collections"=1] [beforeTotalCount=50000] [afterTotalCount=100000] [totalIncrease=50000][migration/es_starter.go:25] ["[Starter] migration ES to Milvus finish!!!"] [Cost=80.009174459][starter/starter.go:106] ["[Starter] Migration Success!"] [Cost=80.00928425][cleaner/remote_cleaner.go:27] ["[Remote Cleaner] Begin to clean files"] [bucket=a-bucket] [rootPath=testfiles/output/zwh/migration][cmd/start.go:32] ["[Cleaner] clean file success!"]
复制代码


除了使用命令方式,项目也支持 Restful api 来执行迁移。首先执行如下命令来启动 Restful api server:


./milvus-migration server run -p 8080


看到以下日志表示服务启动成功:



将 migration.yaml 配置放在当前项目的 configs/migration.yaml, 然后调用 api 来启动迁移:


curl -XPOST http://localhost:8080/api/v1/start


当迁移结束后,我们也可以通过 Attu 来查看迁移成功的总行数,也可以在 Attu 进行 load collection 操作;而 collection 主键和 vector 字段建立 autoIndex 索引在迁移过程会自动创建好。


访问 swagger 来查看服务提供的 api:http://localhost:8080/docs/index.html



ES 到 Milvus 2.x 迁移就介绍到这里,下面我们来看下 milvus1.x -> 2.x 迁移过程。

Milvus 1.x -> Milvus 2.x

1. Milvus 1.x 数据准备 - (可跳过,Zilliz Cloud 上的 Milvus 用户迁移会用到)

为了让用户快速体验,在项目源码的 testfiles 目录下放置了 1w 条 Milvus 1.x 测试数据在 test1/目录下,目录结构:包含 tables 和 meta.json 两部分。快速体验可用该测试数据:



正常情况用户需要导出自己的 Milvus 1.x 的 meta.json 文件,导出方式可通过命令:


./milvus-migration export -m "user:password@tcp(adderss)/milvus?charset=utf8mb4&parseTime=True&loc=Local" -o outputDir


其中 user/password/address 为 Milvus1.x 使用的 mysql;会导出到 outputDir,导出前 Milvus1.x server 需要停机或者停止写入数据。随后将 Milvus 的 tables 文件夹进行 copy 和 meta.json 放到同一个目录下面。(Milvus 的 tables 文件夹一般在 /${user}/milvus/db/tables )


目录结构如下:


filesdir


--- meta.json    
--- tables
复制代码


当准备好数据后,如果使用的 Milvus 2.x 在 Zilliz Cloud 云,则可直接在 cloud console 页面进行迁移操作。

2. 编译打包

项目源码编译同上,最终生成可执行文件: milvus-migration (在上面的 export 命令中也是使用该文件命令)

3.配置 migration.ymal config

dumper:  worker:    limit: 2    workMode: milvus1x    ------ 工作模式:milvus1x    reader:      bufferSize: 1024      ----- file reader/writer buffer size    writer:      bufferSize: 1024loader:  worker:    limit: 16       ------- 支持同时并发迁移的表数量meta:  mode: local    ------ meta.json文件存放方式,有:local, remote, mysql, sqlite,   localFile: /outputDir/test/meta.json  -- mode: mysql  # milvus的元数据mysql地址  -- mysqlUrl: "user:password@tcp(localhost:3306)/milvus?charset=utf8mb4&parseTime=True&loc=Local"source:        ----- milvus1.x talbes目录文件存储源,可以在local, s3,minio,oss,gcp  mode: local  local:    tablesDir: /db/tables/  --数据文件tables目录target:           ------ 数据通过bulkInsert写入的目标存储位置,  mode: remote    --- 写入的存储的方式可以可以是:remote 和 local(仅验证dump功能使用)  remote:    outputDir: "migration/test/xx" --写入的路径    ak: xxxx    sk: xxxx    cloud: aws   ------ 写入的cloud, 可以是aws, gcp, ali, (如果是minio也填写aws)    region: us-west-2    bucket: xxxxx    useIAM: true    checkBucket: false  milvus2x:    endpoint: "{yourMilvus2_xServerAddress}:{port}"    username: xxxx    password: xxxx
复制代码


关于 migration.yaml 配置文件更加详细的介绍,请查看项目 README.md。

4.执行迁移 Job

不同于 ES 的迁移使用一个命令即可完成迁移,目前 Milvus 1.x 和 Faiss 迁移需要执行 dump 和 load 两个命令(后期规划会改造成一个指令即可)。


  • dump 命令


./milvus-migration dump --config=/{YourConfigFilePath}/migration.yaml


它将 Milvus 1.x 文件数据转为 numpy 文件通过 bulkInsert 写入 target bucket.


  • load 命令


执行 load 命令,将转换好的数据文件导入到 Milvus 2x 里面:


./milvus-migration load --config=/{YourConfigFilePath}/migration.yaml


最终在 Milvus 2.x 中,生成的 collection 中会有两个字段:id 和 data, 可通过 Attu 查看 collection。

Faiss -> Milvus 2.x

1. Faiss 数据准备

前提条件是用户已经准备好了自己的 faiss 数据文件。(为了能快速体验,在项目源码的 testfiles 目录下放置了 faiss 测试数据方便用户体验: faiss_ivf_flat.index.


2. 编译打包

这部分同上,不再展开介绍。

3. 配置 migration.ymal config

dumper:  worker:    limit: 2    workMode: faiss    ------ 工作模式:faiss    reader:      bufferSize: 1024    writer:      bufferSize: 1024loader:  worker:    limit: 2source:  mode: local    ---- 数据源可以为 local和 remote  local:    faissFile: ./testfiles/faiss/faiss_ivf_flat.index
target: create: ----- 指定生成的collection属性 collection: name: test1w shardsNums: 2 dim: 256 metricType: L2
mode: remote remote: ------- 下面配置是将数据写入到本地搭建的minio中,milvus2x也是本地 outputDir: testfiles/output/ cloud: aws ---- 同样支持 aws, gcp, ali endpoint: 0.0.0.0:9000 region: ap-southeast-1 bucket: a-bucket ak: minioadmin sk: minioadmin useIAM: false useSSL: false checkBucket: true milvus2x: endpoint: localhost:19530 username: xxxxx password: xxxxx
复制代码


关于 Faiss 的 migration.yaml 配置文件更加详细的介绍,请查看项目 README.md

4. 执行迁移 Job

  • dump 命令


./milvus-migration dump --config=/{YourConfigFilePath}/migration.yaml


它将 Faiss 文件数据转为 numpy 格式文件通过 bulkInsert 写入 target bucket.


  • load 命令


执行 load 命令,将转换好的数据文件导入到 Milvus 2x 里面:


./milvus-migration load --config=/{YourConfigFilePath}/migration.yaml


完成后可通过 Attu 查看生成的 collection 信息进行验证。

04.未来规划

  • 支持 Redis 迁移到 Milvus

  • 支持 Mongodb 迁移到 Milvus

  • 支持迁移过程断点续传

  • 简化迁移命令:合并 dump 和 load 过程

  • 支持其他数据源迁移到 Milvus

参考资料

  1. Milvus-migration: https://github.com/zilliztech/milvus-migration

  2. Attu: https://milvus.io/docs/attu.md

  3. bulkinsert: https://milvus.io/docs/bulk_insert.md

  4. 官方文档: https://milvus.io/docs

  5. ES scroll api: https://www.elastic.co/guide/en/elasticsearch/reference/7.17/paginate-search-results.html#scroll-search-results




  • 如果在使用 Milvus 或 Zilliz 产品有任何问题,可添加小助手微信 “zilliz-tech” 加入交流群。

  • 欢迎关注微信公众号“Zilliz”,了解最新资讯。

用户头像

Zilliz

关注

Data Infrastructure for AI Made Easy 2021-10-09 加入

还未添加个人简介

评论

发布
暂无评论
新老用户看过来~最实用的 Milvus 迁移手册来啦!_数据迁移_Zilliz_InfoQ写作社区