写点什么

AI 生成文档? 代码有用,领域知识为王

作者:Bruce Talk
  • 2024-09-14
    吉林
  • 本文字数:1401 字

    阅读完需:约 5 分钟

AI生成文档?代码有用,领域知识为王

今天想分享一下最近在团队讨论中关于生成式 AI 能否帮助生成技术/业务文档,提高工作效率的思考。纯属个人观点,希望对你有所启发。

背景

起因是我们在处理一个遗留系统项目时,遇到文档不完整、格式混乱的情况。这个项目已经转手多个外包团队,很多文档是在项目交付后匆忙编写的,导致了各种问题:文档过时、不规范,甚至丢失。而我们的团队接手后,通常只有 1 到 3 个月的时间熟悉项目并独立维护。而外包团队在交接后往往解散,一旦交接不充分,就很难再找到相关人员。

更复杂的是,不同项目的技术栈各异,导致团队成员需要快速掌握多种技术和业务知识,这大大增加了学习成本。

期待

团队希望通过生成式 AI,结合源代码和现有的技术/业务文档(无论是否最新),构建一个知识库。这不仅能帮助团队迅速生成项目的整体概况,了解项目的“前世今生”,还能像一个虚拟专家,解答团队在项目中的各种问题——无论是业务逻辑、技术架构还是数据库设计等方面。即便老团队撤出,AI 也能成为对项目了如指掌的“人”。

挑战

最初我们设想使用 GPT-4o 或 Llama3.1 等生成式 AI,通过 RAG(检索增强生成)技术构建一个本地知识库,满足上述需求。然而,冷静分析后,我们意识到一些不可忽视的问题:

  1. 生成式 AI 虽然有强大的通用知识储备,但对于特定项目的领域知识,依赖的是输入数据。而这些数据往往是过往外包团队留下的质量参差不齐的文档。

  2. 如果这些文档中包含过时或错误的信息,AI 基于此生成的内容也会不准确。

所以,如果 AI 的基础数据不可靠,我们又怎能期望它生成出正确的文档呢?

代码与文档

基于以上挑战,我们意识到:源代码是项目的核心数据资产,虽然其他文档可能过时或不准确,但代码始终能反映项目的现状。因此,AI 可以通过解析代码来生成代码逻辑的解释,这在技术层面是可行且较为准确的。

但要注意,代码只能描述实现逻辑,无法直接推导出原始的业务需求。原因如下:

  • 代码是开发人员对业务需求的抽象,而这个过程往往伴随信息丢失或理解偏差,这也是 Bug 产生的主要原因之一。

  • 因为代码是一种多对一的抽象,同一个业务需求可能有多种实现方式,无法从代码反向推导出原始需求。

尽管这些问题可以通过技术手段逐步解决,但我的核心思考是:人和领域知识的重要性。经历过产品或者项目的人,头脑中的知识比文字形式的文档更有生动,更有意义。AI 只能作为辅助工具,而业务创新仍然依赖于人类的思考与理解。AI 目前还不具备这种创新能力。

反向思考:代码即业务文档?

如果代码能更好地反映业务领域知识,而不是仅仅是技术抽象,那么代码本身或许也可以成为一种业务文档——活文档。这种情况下,AI 生成业务文档的可能性将大大提升。如果代码能够一对一地映射业务需求,业务文档的生成将变得更加可行。 如何能够实现上面的这一点呢? 一个 20 年前的建模方法或许能够帮上忙,那就是领域驱动设计(DDD)。这里就不再赘述,感兴趣的小伙伴可以自行查找。不过有一点可以高度概括 DDD 希望实现的目标:业务需求、模型、代码三者 1 比 1 的反应彼此。那么代码就可以 1:1 的反应业务需求,本身就是一个业务文档了。

最后

无论你是谁,我希望你可以思考:

  • 作为开发人员,你的代码能否真实反映业务领域?而不是你自己的抽象。

  • 作为 AI 开发者,你的数据是否准确,足够支持你的应用需求?

  • 作为业务人员,AI 是你的伙伴,而你的竞争力在于脑中的领域知识,这是 AI 无法替代的。你的竞争力是什么?

践行敏捷实践,让工作变得更美好。欢迎在留言区留言,交流落地经验。


【欢迎关注我的个人博客】

发布于: 刚刚阅读数: 5
用户头像

Bruce Talk

关注

动机至善,私心了无。 2008-09-26 加入

一只程序猿,热爱新技术,痴迷于精益敏捷,现在北国春城工作。践行软件工艺,让工作因我而不同。个人博客:https://brucetalk.com

评论

发布
暂无评论
AI生成文档?代码有用,领域知识为王_AI_Bruce Talk_InfoQ写作社区