本文分享自华为云社区《视频AI,给你的宠物加个表情特效!》,作者:HWCloudAI。
GAN 监督学习是一种联合端到端学习判别模型及其 GAN 生成的训练数据的方法。GANgealing 将框架应用于密集视觉对齐问题。受经典 Congealing 方法的启发,GANgealing 算法训练空间变换器将随机样本从在未对齐数据上训练的 GAN 扭曲为共同的、联合学习的目标模式。目标模式已更新,以使空间转换器的工作“尽可能简单”。Spatial Transformer 专门针对 GAN 图像进行训练,并在测试时自动推广到真实图像。
我们可以使用它来进行密集跟踪或创建物镜。例如,我们将给猫贴一张卡通脸,给 Elon Musk 贴上小胡子,给小狗贴上驯鹿角!
实验步骤
1.安装依赖包
安装完成之后需要重启 Kernel,重启之后才会加载新安装的 PyTorch 库
!export CXX=g++
!pip install ninja==1.11.1 ray==2.1.0 plotly==4.14.3 torch==1.10.1 torchvision==0.11.2 moviepy==0.2.3.5 lmdb==0.99
复制代码
2.下载代码
import os
import moxing as mox
if not os.path.exists('gangealing/'):
mox.file.copy_parallel('obs://weilin/gangealing/', 'gangealing/')
复制代码
3.进入案例文件夹
model:要检测的物体,celeba 代表人、dog 代表狗、 cat 代表猫、 cub 代表鸟
pic:要添加的特效图片
video_name:要添加特效的视频
model = 'cat' #@param ['celeba', 'dog', 'cat', 'cub']
pic = 'ModelArts.png'
video_name = 'demo.mp4'
复制代码
os.environ['RAW_VIDEO_PATH'] = video_name
!chmod 777 ./ffmpeg
os.environ['FFMPEG_BINARY'] = os.path.join(os.getcwd(), 'ffmpeg')
复制代码
4.对视频进行抽帧
from pathlib import Path
from utils.download import download_model, download_video
from applications.mixed_reality import run_gangealing_on_video
from applications import load_stn
from glob import glob
video_resolution = "512" #@param [128, 256, 512, 1024, 2048, 4096, 8192]
pad_mode = 'center' #@param ["center", "border"]
os.environ['FFMPEG_BINARY'] = os.path.join(os.getcwd(), 'ffmpeg')
os.environ['VIDEO_SIZE'] = video_size = str(video_resolution)
os.environ['PAD'] = pad_mode
video = Path(os.environ['RAW_VIDEO_PATH']).stem
os.environ['FRAME_PATH'] = f'data/video_frames/{video}'
os.environ['VIDEO_NAME'] = video
video_path = f'data/{video}'
!chmod 777 process_video.sh
!./process_video.sh "$RAW_VIDEO_PATH"
复制代码
!python prepare_data.py --path "$FRAME_PATH" --out "data/$VIDEO_NAME" --pad "$PAD" --size "$VIDEO_SIZE"
复制代码
5.为视频添加特效
根据视频的长度和硬件规格,运行此单元需要几分钟,您可以在下方监控进度。
fps = 30
batch_size = 1
use_flipping = False
memory_efficient_but_slower = False
if 'cutecat' in video_path:
fps = 60
class MyDict():
def __init__(self): pass
args = MyDict()
args.real_size = int(video_size)
args.real_data_path = video_path
args.fps = fps
args.batch = batch_size
args.transform = ['similarity', 'flow']
args.flow_size = 128
args.stn_channel_multiplier = 0.5
args.num_heads = 1
args.distributed = False # Colab only uses 1 GPU
args.clustering = False
args.cluster = None
args.objects = True
args.no_flip_inference = not use_flipping
args.save_frames = memory_efficient_but_slower
args.overlay_congealed = False
args.ckpt = model
args.override = False
args.out = 'visuals'
if pic == 'dense tracking':
args.label_path = f'assets/masks/{model}_mask.png'
# Feel free to change the parameters below:
args.resolution = 128
args.sigma = 1.3
args.opacity = 0.8
args.objects = False
else: # object lense
args.label_path = f'assets/objects/{model}/{pic}'
args.resolution = 4 * int(video_size)
args.sigma = 0.3
args.opacity = 1.0
args.objects = True
stn = load_stn(args)
print('Running Spatial Transformer on frames...')
run_gangealing_on_video(args, stn, classifier=None)
print('Preparing videos to be displayed...')
复制代码
from IPython.display import HTML
from base64 import b64encode
num = len(list(glob(f'{video}_compressed*')))
compressed_name = f'{video}_compressed{num}.mp4'
congealed_compressed_name = f'{video}_compressed_congealed{num}.mp4'
path = f'visuals/video_{video}/propagated.mp4'
congealed_path = f'visuals/video_{video}/congealed.mp4'
os.system(f"ffmpeg -i {path} -vcodec libx264 {compressed_name}")
os.system(f"ffmpeg -i {congealed_path} -vcodec libx264 {congealed_compressed_name}")
复制代码
6.添加特效前的视频
mp4 = open(video_name,'rb').read()
data_url = "data:video/mp4;base64," + b64encode(mp4).decode()
HTML("""<video width=512 autoplay controls loop><source src="%s" type="video/mp4"></video>""" % (data_url))
复制代码
7.添加特效后的视频
mp4_1 = open(compressed_name,'rb').read()
data_url_1 = "data:video/mp4;base64," + b64encode(mp4_1).decode()
HTML("""<video width=512 autoplay controls loop><source src="%s" type="video/mp4"></video>""" % (data_url_1))
复制代码
8.制作自己的特效视频
上传自己的视频,将视频放在 gangealing/gangealing/下面
上传自己的图片,将图片放在 gangealing/gangealing/assets/objects/*/对应的种类的文件夹下面,自己制作的特效图片尺寸要是 8192x8192
修改步骤 3 里的 3 个参数,重新运行一遍即可!
点击关注,第一时间了解华为云新鲜技术~
评论