Kubernetes 云原生实战:分布式 GeaFlow 实现图研发,构建第一个商业智能应用
GeaFlow(品牌名 TuGraph-Analytics) 已正式开源,欢迎大家关注!!! 欢迎给我们 Star 哦! GitHub👉https://github.com/TuGraph-family/tugraph-analytics
更多精彩内容,关注我们的博客 https://geaflow.github.io/
引言
Kubernetes 在云原生应用中扮演着至关重要的角色,为商业智能(BI)强大赋能。 不同于传统的 BI,容器化部署在集群中可以获得更高的可靠性、弹性和灵活性。
但在实际生产实践中,这还远远不够。 商业智能分析人员更希望搭建实时提问快速响应的研发平台,使得数据能够回应分析人员的想法,并产出更多支持商业决策的信息。 这需要类似于 OLAP 的在线分析处理(OLAP)技术,帮助查询、分析和理解大规模数据,从而做出更明智的商业决策。
例如这样一个接近实际的场景——
分析师想要找到具有'Comedian'类别下标签的博文和评论,TA 的意图可以被描述如下:
这里使用了开源图研发引擎 GeaFlow 支持的 GQL 语言描述,可以简单直观地描述商业关系。 后文将介绍基于分布式 GeaFlow 实现图研发,都采用类似的描述。
一段时间的研究后,分析师开始关注发布者的朋友都有哪些:
熟悉关系型数据库和大数据处理平台的朋友可能知道,这类模式分析涉及一系列的大型 Join 连接处理,在现有系统中计算时间往往超出预期。 在传统的商业智能模式下,分析师可能需要等待数天的时间才能获得他们需要的结果,以上 3 个小查询的处理成本已经大大超出它们产出的价值。
因此,我们需要一种能够快速支持查询和业务演进的解决方案,并且能够在一次构建后持续不断地提供商业智能信息产出。 在这种情况下,最好的选择是使用云原生部署的图研发平台。
图研发平台可以提供高效的图分析能力,使得分析师可以更快地探索数据,并且可以轻松地构建和优化查询。 使用图研发平台,可以将复杂的数据模型转化为可视化的图形表示,使得即使是新手分析师也可以直观地理解数据之间的关系。 此外,云原生技术保证平台的可扩展性和弹性,使得一行代码可以瞬间放大几十万倍,支撑起大规模数据的快速分析。
接下来我们带着这个问题出发,以支持云原生的分布式图研发平台 GeaFlow 为例,快速搭建起你的第一个商业智能应用。
部署环境
部署 GeaFlow 需要一个 docker+K8S 的云原生环境,因此需要提前安装 docker 和 K8S。 GeaFlow 能够将业务数据转化为图,一旦将数据导入一张图中,后续就可以持续支持各种分析需求。 业务数据支持各类来源,包括数据库、Hive、Kafka 等等。
GeaFlow 会在镜像中自动拉起 MySQL、Redis、RocksDB、InfluxDB 等必须组件。
部署 K8S
GeaFlow 依赖 K8S 运行图研发作业,安装 K8S 后需要取得 API 地址。
K8S API Server 默认监听 6443 端口,可以在 K8S 集群的任一节点上使用以下命令查看集群信息:
查看输出结果中的“Kubernetes master”字段,该字段将列出 Master 节点的 URL 地址,该地址即为 K8S API 地址,例如:
'/etc/kubernetes/admin.conf' 是 Kubernetes 集群的管理员配置文件,其中包含了客户端程序访问 Kubernetes API Server 的必要信息。
kubernetes.ca.data:该字段包含一个 Base64 编码的 PEM 格式的 CA 证书,用于验证 Kubernetes API Server 的身份。
kubernetes.cert.data:该字段包含一个 Base64 编码的 PEM 格式的客户端证书,用于验证客户端的身份。
kubernetes.cert.key:该字段包含一个 Base64 编码的 PEM 格式的私钥,用于解密客户端证书。
这些字段的值通常被编码为 Base64 格式并存储在配置文件中,以保证安全性。
GeaFlow 需要取得这三个参数以启动 K8S 客户端,提交作业到集群。
部署 DFS
为了存储 TB 级别的超大规模图,可能需要搭建 DFS,小规模数据则不必要部署 Hadoop,GeaFlow 可以将图数据保存在本地磁盘中。
部署 Hadoop 后,需要取得文件系统地址,GeaFlow 需要连接 Hadoop 写入图数据和系统运行状态数据。 打开终端并登录到 Hadoop 集群中的任何一个节点,运行以下命令:
这将显示 Hadoop 集群的所有主节点的列表。如果集群只有一个主节点,则只会显示一个主节点的名称。 连接到 Hadoop 集群的主节点,运行以下命令:
这将显示 fs.defaultFS 的值,即 Hadoop 集群的默认文件系统 URI。
部署外部数据源
GeaFlow 目前支持 DFS、Kafka、Hive 等数据源,未来将支持 JDBC、Pulsar 等数据源。
用户可以实现自定义的数据源,参考自定义Connector文档。其中也包含现有数据源的使用方法。
如果需要更多数据源的支持,可以通过 GitHub 项目地址提出 ISSUE,或者加入微信群联系我们。
安装 GeaFlow
GeaFlow 提供一个分布式图计算引擎 GeaFlow,同时提供一个完整的图研发管控平台 Console。 用户可在系统内完成图数据创建、研发、运维等工作。 管控平台 Console 可以基于 Docker 独立启动,配置好集群和存储系统后,图研发作业可以方便地提交到 K8S 集群运行。
参考GeaFlow安装部署文档安装 GeaFlow。
在集群配置步骤中,配置 K8S 集群到 GeaFlow,填入 K8S 服务地址与前文提到的证书信息。
安装时会提示当前为单机部署模式,这表示 Console 平台使用默认单机部署。 图研发作业会被提交到配置的 K8S 集群,Console 平台提供作业编辑和运维能力,不受影响。
在数据存储配置步骤中,配置导入 GeaFlow 的图数据存储位置。
数据量较小可以配置为 LOCAL 模式,无需修改。 若数据量比较大,配置为 DFS 地址,Root 路径为存储数据在 DFS 中的根目录。
最后点击一键安装完成 GeaFlow 安装部署。
构图
一次构图
GeaFlow 可以支持 TB 级别的超大规模图,使得用户构图完成后,轻松应对业务演进。 超大规模数据的存储需要 DFS 的支持,数据来源可以是数据库、Hive、Kafka 等等任何外部系统,通过对应的 Connector 读写数据。
举例来说,我们创建实现商业智能应用的第一张图,命名为 bi。 创建图后, 将外部数据源的业务数据导入图中,使用对应的 Connector 完成数据导入。
图的 Schema 定义如下,图名称为 bi:
追加
即使在构图完成后,也可以向图中追加新的数据。 追加数据时,还可以流式触发增量查询,不断更新查询结果。
向图 bi 中单独追加 Person 和 knows 点边数据的 GQL:
图研发实现商业智能
数据调查
分析商业数据的第一步是明确问题,并通过数据调查开始针对性地进行数据分析,避免浪费时间和资源在无用的分析上。 我们已经利用 GeaFlow 将数据导入图 bi 中,可以通过运行图查询作业快速地得出结论和洞察。
以如下查询为例,它帮助我们了解用户关注的 tag 都有哪些,结果被写入本地或 DFS 的 interest_tag 文件夹中。
其核心查询是 **MATCH (person:Person)-[:hasInterest]->(tag:Tag)。 这里()表示查询图中的点,[]**表示查询图中的边。 完整的含义是"用户感兴趣的标签",GeaFlow 采用类似 ISO-GQL 的模式表达,可以方便自然地描述关系。
通过管控平台 Console,分析人员可以提交一系列研究作业。 这些图查询作业会通过 GeaFlow 引擎自动提交到 K8S 集群中分布式地运行,大大太高了数据分析的能力和效率。
运行的图查询均可在 Console 界面查看,方便回溯和管理。
图研发
通过了基础的数据调查,分析师开始关注用户在标签上展现的中心性。 我们可以自定义一种中心性关系:
用户相对标签的中心性包括两部分,第一部分等于用户发送该标签消息数,第二部分为用户对该 TAG 感兴趣则+100
计算图中所有用户对 TAG 的中心性可以被表示为如下的查询:
其中 person.score 由 person.messageScore 和**IF(person.hasInterest > 0, 100, 0)**两部分组成,返回的列表经分数降序排列,取前 100 条记录。
更近一步地,分析人员可以定义这种中心性分数的一度传播,使其成为中介中心性分数的近似值。 我们设计的查询关系如下图,用户对某个 TAG 的中介中心性分数近似为与其具有 knows 关系用户的中心性分数之和。
表示为 GQL 查询如下:
这个查询计算了一段时间内,1020002 这个标签相关的用户一度中介中心性分数,把个人的中心性分数与中介中心性分数相加,降序排列后输出前 100 条记录。
至此,我们模拟进行了一次图研发过程,得到了一种可以利用的标签中心性计算方法。 整个过程都在 GeaFlow 的管控平台 Console 中完成,分析人员无需关注云上的作业运行细节。
构建应用
如果我们希望长期利用图研发得到的计算方法,则可以将其构建为长期运行的图计算应用。
通过接入数据源进行流式图查询,GeaFlow 将在图每次更新或外部数据触发时,执行一次中介中心性分数计算。 更新的结果将被输出到外部系统,方便分发给下游。
搭建方法可以参考谁在以太坊区块链上循环交易?GeaFlow+Kafka的0元流图解决方案这篇博文,这里不再赘述。
总结
本文介绍了 GeaFlow 如何在云原生的 K8S 环境中安装部署,并模拟了一次商业智能研究过程。 全程采用 GeaFlow 自有的管控平台 Console 提交作业,展现了系统强大的表达和计算能力。
GeaFlow(品牌名 TuGraph-Analytics) 已正式开源,欢迎大家关注!!!
欢迎给我们 Star 哦!
Welcome to give us a Star!
GitHub👉https://github.com/TuGraph-family/tugraph-analytics
更多精彩内容,关注我们的博客 https://geaflow.github.io/
评论