写点什么

JavaScript 刷 LeetCode 拿 offer- 分治

作者:Geek_07a724
  • 2022-11-02
    浙江
  • 本文字数:6081 字

    阅读完需:约 20 分钟

前言

今天没啥前言,分治很难,主要难在如何拆分后比较好治理合并,这比二分这些只要拆了就结束要难上一个 level,所以这里属于出入 分治 这种想法的思维,后续会尽可能的锻炼这样的做法;做一道分治,如果能用其他方法代替的时候,一般分治不算是最优解,起码很伤脑子;

正文

概念

分治即分而治之,所以要分成两部分


  • 分:将一个规模为 N 的问题分解为若干个规模较小的子问题

  • 治:根据子问题的解求原问题

关键点

  • 一定是先分再治

  • 治一定是利用分的结果进行的,也就是说治依赖于分

适用场景

  1. 如果问题可以被分解为若干个规模较小的相同问题

  2. 这些被分解的问题的结果可以进行合并

  3. 这些被分解的问题是相互独立的,不包含重叠的子问题


分支和 dp 有很深联系,且与二分法也有关联,本质上,二分就是一直只有分没有治的分治,因为二分的结果只需要找到那个较小的相同问题的解,不需要再合并起来;

技巧

  1. 思考子问题的求解边界,使用函数来定义问题

  2. 思考如何将子问题的解进行合并 -- 假设子问题已经计算好了,如何合并起来

  3. 思考编码思路 -- 一般使用递归

分治和二分,dp 的异同

  • 二分只对问题进行分,分完直接舍弃;而分治不仅需要对问题进行分解,还需要对多个问题进行治理

  • 分治和 dp 都涉及到问题的问题,并且都需要保证子问题的不重不漏。

  • dp 是通过递推和选择进行转译,从特殊推广到一半

  • 分治也可能涉及到选择;

  • dp 解决的问题往往伴随重叠子问题,而分治则不是

小结

  • 如果一个问题被文杰为若干个不重叠的独立子问题,并且子问题可以推到出原问题,我们就可以用分治来解决;

题目

53. 最大子序和

分析 -- 分治法


  1. 先分 -- 运用递归的方法将数组区间的左右节点 l,r 不断二分出去,直到 l === r 为止,这个时候需要考虑怎么治理了

  2. 再治 -- 这里最终要求的是最大的连续子序列,我们先考虑两个值合并,最大的情况是三种, Math.max(L,R,L+R),

  3. 但是当再多一点值的时候,我们就需要改变一下 Math.max(LMAX,RMAX,L_Rmax+R_Lmax) 这里的 LMAX, RMAX 是指合并两个区间的最大值,L_Rmax 是指在 L 区间包含 right 终点为最大区间;

  4. 所以治的过程中,每个区间需要有 4 个变量,分别是 totalSum 区间总和,leftSum 包含 left 节点的最大连续子列和, rightSum 包含 right 节点的最大连续子列和, maxSum 区间的最大值

  5. 初始化的时候,也就是单个节点的时候,4 个变量都是唯一值 nums[l]

  6. 开始合并治理,

  7. totalSum 直接将两个节点的 totalSum 合并即可;

  8. leftSum 总是和 left 区间相关 -- Math.max(left.maxSum,left.totalSum+right.leftSum), 要不直接区左区间的最大值,要不全取左区间 + 右区间的 leftSum

  9. 同理 rightSum 也总是和 right 区间相关 -- Math.max(right.maxSum,right.totalSum+left.rightSum)

  10. maxSum 分三种情况 -- Math.max(left.maxSum,right.maxSum,left.rightSum+right.leftSum)

  11. 所以先递后归,时间复杂度为 O(n)


参考视频:传送门


var maxSubArray = function (nums) {    const recursion = (l,r) => {        if(l === r) {            return {                totalSum: nums[l],                leftSum: nums[l],                rightSum: nums[l],                maxSum: nums[l]            }        }        const mid = ((r-l)>>2)+l        const left = recursion(l,mid)        const right = recursion(mid+1,r)        return {            totalSum:left.totalSum+right.totalSum, // 区间内值的总和            leftSum:Math.max(left.leftSum,left.totalSum+right.leftSum), // 左边界开始的最大连续子列和            rightSum: Math.max(right.rightSum,right.totalSum+left.rightSum), // 区间哟偶边界结束的最大连续子列和            maxSum:Math.max(left.maxSum,right.maxSum,left.rightSum+right.leftSum)        }    }    return recursion(0,nums.length-1).maxSum}
复制代码


分析 -- 贪心


  1. 求的是最大和的连续子数组

  2. 用 sum 缓存前面和大于 0 的子数组之和,一旦小于 0 ,就不再累加,重新置 0, 保持每一次迭代前 sum 的值都是 >=0

  3. 这样对于每一个局部子数组,它的累加值都是大于等于 0 的,这样每次累加一个新值,就进行最大值比较,保证整体是一个最大子数组之和

  4. 时间复杂度 O(n)


var maxSubArray = function (nums) {  let max = -Infinity;   let sum = 0   for(let i = 0 ;i<nums.length;i++){       sum+=nums[i]       max = Math.max(sum,max)       if(sum<=0){           sum=0       }   }   return max};

复制代码

96. 不同的二叉搜索树

分析 -- 分治


  1. 题目都是给定 n 个节点,求最多能有多少种 BST,也就是求在 [1,n] 这些节点能构成多少中 BST, 可以细分到按顺序的 [k,k+n] 的小区间,能构成多少个 BST

  2. 先分: 由于 BST 左树小于右树,所以可以不断将节点区间拆分左右两份,交给子树自己处理

  3. 再治: 拆分到只有一个节点的时候,自然只有一种了;当左右树分别都有 l,r 种不同的解法,合并之后就是 l*r 种了

  4. 当然这种办法会做很多重复的工作,毕竟我们在执行回调的时候,入参的指数一个节点树 x, 所以我们可以用空间换时间的概念,缓存一些值

  5. 这样处理之后,时间复杂度为 O(nlog(n)), 空间复杂度为 O(n)


var numTrees = function (n) {  const map = new Map();  const recursion = (n) => {    if (n <= 1) return 1; //没有节点也算一种分配    let temp = 0;    for (let i = 1; i <= n; i++) {      let l, r;      if (map.has(i - 1)) {        l = map.get(i - 1);      } else {        l = recursion(i - 1);        map.set(i - 1, l);      }      if (map.has(n - i)) {        r = map.get(n - i);      } else {        r = recursion(n - i);        map.set(n - i, r);      }      temp += l * r;    }    return temp;  };  return recursion(n);};
复制代码


分析 -- dp + 分治


  1. 根据分治解法可知,每一次都只是按照节点数来治理相应的子树,所以可以用 dp 来缓存

  2. dp[i] 表示有 i 个节点时,不同子树的最大数量

  3. base case dp[0] =1, 这个其实就是分治中分到最后的初次治理

  4. 状态转移方程: dp[i] = 累加的 dp[k-1]*dp[i-k] 这里就是分治中治理合并的过程,在 dp 中是状态转移方程;

  5. 时间复杂度为 O(nlog(n)), 空间复杂度为 O(n)


var numTrees = function (n) {    const dp = new Array(n+1)    dp[0] = 1    for(let i =1;i<=n;i++){        dp[i] = 0        for(let j = 1;j<=i;j++){            dp[i] +=dp[j-1]*dp[i-j]        }    }    return dp[n]}
复制代码

169. 多数元素

分析 -- 分治


  1. 先分:将 nums 拆分到单个值的数组之后,然后开始治理

  2. 再治:合并的时候,先找出两个合并的众数值和数量,然后再考虑合并之后哪一个才是真正的众数;

  3. 再治 2:选择众数是通过比较两个合并数组得到的,合并之后众数值是两个数组都要获取的,所以每一次治的时候都要再次获取对应 target 的数量

  4. 治理解析: 为什么直接比对两个数组的众数就能得到合并后数组的众数,那么这两个值就当前数组最有可能的众数了,只要比对这两个值就能得到当前合并数组的真正众数了

  5. 二分递归的时间复杂度是 logn, 每一次治理合并的时候的复杂度也是 logn,所以时间复杂度是 O(n),空间复杂度 O(1)


 var majorityElement = function(nums) {    const recursion = (l,r) => {        if(l === r) return nums[l]        const mid = ((r-l)>>1)+l         const lMax = recursion(l,mid)        const rMax = recursion(mid+1,r)        if(lMax === rMax) return lMax // 如果相等,则就是众数了        let lMaxtCount = 0        let rMaxtCount = 0        for(let i=l;i<=r;i++){            if(nums[i] === lMax) lMaxtCount++            if(nums[i] === rMax) rMaxtCount++        }
return lMaxtCount>rMaxtCount ? lMax:rMax } return recursion(0,nums.length-1)}
复制代码


分析 -- 摩尔投票法


  1. 如果有一个值 target 得到票数是 nums 的一半以上,那么对于任意一个最开始的取值,我们都可以假设为 target,然后维护一个票数 count

  2. 如果 count 已经为 0 了,那么就替换 target 值,直到最后留在 target 上的值,就是所求的值

  3. 这里考虑最极端的情况,就是一开始就取到了真实的 target 值,它不断和其他值进行抵消,由于 target 的数量是大于一半的,所以最后还是能保留在 target 上

  4. 时间复杂度 O(n), 空间复杂度 O(1)


var majorityElement = function(nums) {    let target;    let count = 0    for(let num of nums){        if(count === 0 && target !== num) {            // 如果 count 为 0, 证明上一个 target 已经无效了            target = num         }        if(target === num){            count++        }else{            count--        }    }    return target};

复制代码

23. 合并 K 个升序链表

分析 -- 直接迭代合并链表


  1. 合并 k 个链表不好合并,合并 2 个链表就比较简单了;

  2. 这里每一次合并两个链表

  3. 合并两个链表为 1 个,然后不断的迭代,最后得到一个

  4. 最后超时了,时间复杂度是 NM 其中 N 是链表数组的长度,M 是链表的平均长度


var mergeKLists = function (lists) {  if (!lists.length) return new ListNode().next;  return lists.reduce((prev, cur) => mergeTwoList(prev, cur));};  // 合并两个有序链表  const mergeTwoList = (l1, l2) => {    let temp1 = l1,      temp2 = l2;    let emptyNode = (current = new ListNode());    while (temp1 && temp2) {      if (temp1.val > temp2.val) {        current.next = temp2;        temp2 = temp2.next;      } else {        current.next = temp1;        temp1 = temp1.next;      }      current = current.next;    }    while (temp1) {      current.next = temp1;      current = current.next;      temp1 = temp1.next;    }    while (temp2) {      current.next = temp2;      current = current.next;      temp2 = temp2.next;    }    return emptyNode.next;  };
复制代码


分析 -- 分治


  1. 合并 k 个链表不好合并,合并 2 个链表就比较简单了;

  2. 先分: 按照长度进行二分拆分,只要超过 2 个链表就继续往下拆分,直到为 1 个的时候,再治理

  3. 再治: 当进行二分拆分后,再组合起来,迭代到最后得到两个有序的数组,然后得到了一个完整的链表

  4. 使用分治而不是迭代合并,可以使得合并的次数从 n 次 降低到了 logn, 时间复杂度为 MlogN 其中 M 为合并两个链表的长度,n 是链表数组的长度


 var mergeKLists = function (lists) {    const len = lists.length;    if (!len) return null    if (len === 1) return lists[0];    if(len === 2) return mergeTwoList(lists[0],lists[1])    const mid = len >> 1;    return mergeTwoList(      mergeKLists(lists.slice(0, mid)),      mergeKLists(lists.slice(mid))    );  };


复制代码

932. 漂亮数组

分析 -- 分治


  1. 解答这道题最主要是有两个公式,奇数+偶数 !== 奇数,所以如果取值的时候左侧都是奇数,右侧都是偶数,那么肯定符合要求

  2. 第二个公式是: 如果 2i !== l+r, 那么 2(i2+b) !== l2+b+ r2+b; 这个等式是当我们取的 3 个值同奇偶的时候(2(i2+b),l2+b, r2+b),我们需要考虑,在它的下一层,他们(i,l,r)是符合漂亮数组的;

  3. 所以这就需要自底向上,每一次都组合好漂亮数组,然后再网上去合并治理

  4. 先分: 由于给定的都是数组长度,所以自己按需填入对应的 [1,2...n] 值就好,一直分到只有一个值了,那么就是 1 了

  5. 再治: 合并的时候必须保证合并双方都已经是漂亮数组,这样合并之后才必然是漂亮数组,这里保证合并之后,左侧都是奇数,右侧都是偶数

  6. 由于漂亮数组的排列只和长度 n 有关,为了降低重复计算,使用 map 缓存数据

  7. 时间复杂度 O(n)


这里最需要考虑的就是当取到三个值是同奇偶的时候,如何保证漂亮;我们知道对于同奇偶的值而言,它是由下一层的漂亮数组递归回来,然后通过 2k+b 的方式转换而来的,也就是说同奇偶的值是符合第二个公式的,进而可以确定他们也是漂亮的这里其实还隐藏了一个等式,那就是对于 [1,2,...,2n] 而言,它是由[[1,2,...n].map(i=>i2-1) , [1,2,...n].map(i=>i2-1)] 组成的,这样也同时将奇数放在左边,偶数放在了右边,这是治的一部分;


var beautifulArray = function (n) {  const map = new Map();  map.set(1, [1]); // 初始化,也是截止条件  const recursion = (n) => {    if (map.has(n)) return map.get(n); // 递归的终止条件    // 奇数放在左侧 -- 按照数组长度排列好漂亮数组后,然后再通过 2N-1 的方式转成当前层的奇数    const left = recursion((n + 1) >> 1).map((item) => item * 2 - 1);    const right = recursion(n >> 1).map((item) => item * 2);    const ret = [...left, ...right];    map.set(n, ret);    return ret;  };  return recursion(n);};

复制代码

215. 数组中的第 K 个最大元素

分治 -- 快速搜索


  1. 求第 k 大,也就是求排好序之后的第 len(nums)-k+1 个值,对应于下标就是 targetIndex =len(nums)-k

  2. 这里用到快排的方式,找出随机下标 mid ,然后进行快搜,将大于 nums[mid] 的放在右侧,小于 mid 的放在左侧, 最后返回 nums[mid] 在整理后的下标 pivotIndex

  3. 如果得到的 pivotIndex 大于我们的 targetIndex,则再次快搜左侧[left,pivotIndex-1]数组

  4. 时间复杂度,最快是 O(n) 一次找到,最慢是 O(n2)


 var findKthLargest = function (nums, k) {    const select = (left, right) => {      if (left === right) return nums[left];      let mid = ((right - left) >> 1) + left;    //   pivotIndex 表示 mid 在整理后数组所在 index      const pivotIndex = dfs(left, right, mid);      if (pivotIndex === nums.length-k) return nums[pivotIndex];      if (pivotIndex > nums.length-k) {        return select(left, pivotIndex - 1);      } else {        return select(pivotIndex + 1, right);      }    };    const dfs = (left, right, pivot) => {      let l = left,        r = right;      const target = nums[pivot];      //先放在最左边,然后[l+1,r] 的位置进行处理,最后在 l,r 的交界处,再把 target 交换回来     //  这里是先将 target 放在了左边,所以要找到的是交界处小于 target 的那个点,也就是 r,然后让 r 和 原始的left 进行值交换即可      [nums[l], nums[pivot]] = [nums[pivot], nums[l]];       while (l <= r) {        while (nums[l] <= target && l <= r) {          l++;        }        while (nums[r] >= target && r >= l) {          r--;        }        if (l > r) break;        [nums[l], nums[r]] = [nums[r], nums[l]];      }      [nums[left], nums[r]] = [nums[r], nums[left]];      return r;    };    return select(0, nums.length - 1);  };

复制代码


用户头像

Geek_07a724

关注

还未添加个人签名 2022-09-14 加入

还未添加个人简介

评论

发布
暂无评论
JavaScript刷LeetCode拿offer-分治_JavaScript_Geek_07a724_InfoQ写作社区