数据湖(六):Hudi 与 Flink 整合
- 2022-10-21 广东
本文字数:2920 字
阅读完需:约 1 分钟
Hudi 与 Flink 整合
Hudi0.8.0 版本与 Flink1.12.x 之上版本兼容,目前经过测试,Hudi0.8.0 版本开始支持 Flink,通过 Flink 写数据到 Hudi 时,必须开启 checkpoint,至少有 5 次 checkpoint 后才能看到对应 hudi 中的数据。
但是应该是有一些问题,目前问题如下:
在本地执行 Flink 代码向 Flink 写数据时,存在“java.lang.AbstractMethodError: Method org/apache/hudi/sink/StreamWriteOperatorCoordinator.notifyCheckpointComplete(J)V is abstract”错误信息,预计是 hudi 版本支持问题。
写入到 Flink 中的数据,如果使用 Flink 读取出来,会有对应的错误:“Exception in thread "main" org.apache.hudi.exception.HoodieException: Get table avro schema error”,这个错误主要是由于上一个错误导致 Hudi 中没有 commit 信息,在内部读取时,读取不到 Commit 信息导致。
一、maven pom.xml 导入如下包
<properties>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
<maven.compiler.source>1.8</maven.compiler.source>
<maven.compiler.target>1.8</maven.compiler.target>
<flink.version>1.12.1</flink.version>
</properties>
<dependencies>
<!-- Flink操作Hudi需要的包-->
<dependency>
<groupId>org.apache.hudi</groupId>
<artifactId>hudi-flink-bundle_2.11</artifactId>
<version>0.8.0</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-clients_2.11</artifactId>
<version>${flink.version}</version>
</dependency>
<!-- java 开发Flink所需依赖 -->
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-java</artifactId>
<version>${flink.version}</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-streaming-java_2.11</artifactId>
<version>${flink.version}</version>
</dependency>
<!-- Flink 开发Scala需要导入以下依赖 -->
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-scala_2.11</artifactId>
<version>${flink.version}</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-streaming-scala_2.11</artifactId>
<version>${flink.version}</version>
</dependency>
<!-- 读取hdfs文件需要jar包-->
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-client</artifactId>
<version>2.9.2</version>
</dependency>
<!-- Flink 状态管理 RocksDB 依赖 -->
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-statebackend-rocksdb_2.11</artifactId>
<version>${flink.version}</version>
</dependency>
<!-- Flink Kafka连接器的依赖 -->
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-connector-kafka_2.11</artifactId>
<version>${flink.version}</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-csv</artifactId>
<version>1.12.1</version>
</dependency>
<!-- Flink SQL & Table-->
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-table-planner_2.11</artifactId>
<version>${flink.version}</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-table-api-scala-bridge_2.11</artifactId>
<version>${flink.version}</version>
</dependency>
<!-- Flink SQL中使用Blink 需要导入的包-->
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-table-planner-blink_2.11</artifactId>
<version>${flink.version}</version>
</dependency>
</dependencies>
二、Flink 写入数据到 Hudi 代码
//1.创建对象
val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment
val tableEnv: StreamTableEnvironment = StreamTableEnvironment.create(env,EnvironmentSettings.newInstance()
.useBlinkPlanner().inStreamingMode().build())
import org.apache.flink.streaming.api.scala._
//2.必须开启checkpoint 默认有5个checkpoint后,hudi目录下才会有数据,不然只有一个.hoodie目录。
env.enableCheckpointing(2000)
// env.setStateBackend(new RocksDBStateBackend("hdfs://mycluster/flinkstate"))
//3.设置并行度
env.setParallelism(1)
//4.读取Kakfa 中的数据
tableEnv.executeSql(
"""
| create table kafkaInputTable(
| id varchar,
| name varchar,
| age int,
| ts varchar,
| loc varchar
| ) with (
| 'connector' = 'kafka',
| 'topic' = 'test_tp',
| 'properties.bootstrap.servers'='node1:9092,node2:9092,node3:9092',
| 'scan.startup.mode'='latest-offset',
| 'properties.group.id' = 'testgroup',
| 'format' = 'csv'
| )
""".stripMargin)
val table: Table = tableEnv.from("kafkaInputTable")
//5.创建Flink 对应的hudi表
tableEnv.executeSql(
"""
|CREATE TABLE t1(
| id VARCHAR(20) PRIMARY KEY NOT ENFORCED,--默认主键列为uuid,这里可以后面跟上“PRIMARY KEY NOT ENFORCED”指定为主键列
| name VARCHAR(10),
| age INT,
| ts VARCHAR(20),
| loc VARCHAR(20)
|)
|PARTITIONED BY (loc)
|WITH (
| 'connector' = 'hudi',
| 'path' = '/flink_hudi_data',
| 'write.tasks' = '1', -- default is 4 ,required more resource
| 'compaction.tasks' = '1', -- default is 10 ,required more resource
| 'table.type' = 'COPY_ON_WRITE' -- this creates a MERGE_ON_READ table, by default is COPY_ON_WRITE
|)
""".stripMargin)
//6.向表中插入数据
tableEnv.executeSql(
s"""
| insert into t1 select id,name,age,ts,loc from ${table}
""".stripMargin)
env.execute()
以上代码需要注意“PRIMARY KEY NOT ENFORCED”可以不指定,如果不指定 hudi 对应的主键列默认是“uuid”,指定后可以使用自定义的列名当做主键。
版权声明: 本文为 InfoQ 作者【Lansonli】的原创文章。
原文链接:【http://xie.infoq.cn/article/ccd0a0ef68a81ce383c164396】。文章转载请联系作者。
Lansonli
微信公众号:三帮大数据 2022-07-12 加入
CSDN大数据领域博客专家,华为云享专家、阿里云专家博主、腾云先锋(TDP)核心成员、51CTO专家博主,全网六万多粉丝,知名互联网公司大数据高级开发工程师
评论