什么是动态规划
动态规划,英文:Dynamic Programming,简称DP,将问题分解为互相重叠的子问题,通过反复求解子问题来解决原问题就是动态规划,如果某一问题有很多重叠子问题,使用动态规划来解是比较有效的。
求解动态规划的核心问题是穷举,但是这类问题穷举有点特别,因为这类问题存在「重叠子问题」,如果暴力穷举的话效率会极其低下。动态规划问题一定会具备「最优子结构」,才能通过子问题的最值得到原问题的最值。另外,虽然动态规划的核心思想就是穷举求最值,但是问题可以千变万化,穷举所有可行解其实并不是一件容易的事,只有列出正确的「状态转移方程」才能正确地穷举。重叠子问题、最优子结构、状态转移方程就是动态规划三要素
动态规划和其他算法的区别
动态规划和分治的区别:动态规划和分治都有最优子结构 ,但是分治的子问题不重叠
动态规划和贪心的区别:动态规划中每一个状态一定是由上一个状态推导出来的,这一点就区分于贪心,贪心没有状态推导,而是从局部直接选最优解,所以它永远是局部最优,但是全局的解不一定是最优的。
动态规划和递归的区别:递归和回溯可能存在非常多的重复计算,动态规划可以用递归加记忆化的方式减少不必要的重复计算
动态规划的解题方法
解动态规划题目的步骤
根据重叠子问题定义状态
寻找最优子结构推导状态转移方程
确定 dp 初始状态
确定输出值
斐波那契的动态规划的解题思路
动画过大,点击查看
暴力递归
 //暴力递归复杂度O(2^n)var fib = function (N) {    if (N == 0) return 0;    if (N == 1) return 1;    return fib(N - 1) + fib(N - 2);};
       复制代码
 
递归 + 记忆化
 var fib = function (n) {    const memo = {}; // 对已算出的结果进行缓存
    const helper = (x) => {        if (memo[x]) return memo[x];        if (x == 0) return 0;        if (x == 1) return 1;        memo[x] = helper(x - 1) + helper(x - 2);        return memo[x];    };
    return helper(n);};
       复制代码
 
动态规划
 const fib = (n) => {    if (n <= 1) return n;    const dp = [0, 1];    for (let i = 2; i <= n; i++) {        //自底向上计算每个状态        dp[i] = dp[i - 1] + dp[i - 2];    }    return dp[n];};
       复制代码
 
滚动数组优化
 const fib = (n) => {    if (n <= 1) return n;    //滚动数组 dp[i]只和dp[i-1]、dp[i-2]相关,只维护长度为2的滚动数组,不断替换数组元素    const dp = [0, 1];    let sum = null;    for (let i = 2; i <= n; i++) {        sum = dp[0] + dp[1];        dp[0] = dp[1];        dp[1] = sum;    }    return sum;};
       复制代码
 
动态规划 + 降维,(降维能减少空间复杂度,但不利于程序的扩展)
 var fib = function (N) {    if (N <= 1) {        return N;    }    let prev2 = 0;    let prev1 = 1;    let result = 0;    for (let i = 2; i <= N; i++) {        result = prev1 + prev2; //直接用两个变量就行        prev2 = prev1;        prev1 = result;    }    return result;};
       复制代码
 视频讲解:传送门
斐波那契数 (通常用 F(n) 表示)形成的序列称为 斐波那契数列 。该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和。也就是:
F(0) = 0,F(1) = 1F(n) = F(n - 1) + F(n - 2),其中 n > 1 给定 n ,请计算 F(n) 。
 
示例 1:
输入:n = 2 输出:1 解释:F(2) = F(1) + F(0) = 1 + 0 = 1 示例 2:
输入:n = 3 输出:2 解释:F(3) = F(2) + F(1) = 1 + 1 = 2 示例 3:
输入:n = 4 输出:3 解释:F(4) = F(3) + F(2) = 2 + 1 = 3 
提示:
0 <= n <= 30
方法 1.动态规划
Js:
 var fib = function (N) {    if (N <= 1) {        return N;    }    let prev2 = 0;    let prev1 = 1;    let result = 0;    for (let i = 2; i <= N; i++) {        result = prev1 + prev2;        prev2 = prev1;        prev1 = result;    }    return result;};
       复制代码
 视频讲解:传送门
给你一个整数数组 nums ,请你找出数组中乘积最大的非空连续子数组(该子数组中至少包含一个数字),并返回该子数组所对应的乘积。
测试用例的答案是一个 32-位 整数。
子数组 是数组的连续子序列。
 
示例 1:
输入: nums = [2,3,-2,4]输出: 6 解释: 子数组 [2,3] 有最大乘积 6。示例 2:
输入: nums = [-2,0,-1]输出: 0 解释: 结果不能为 2, 因为 [-2,-1] 不是子数组。 
提示:
1 <= nums.length <= 2 * 104-10 <= nums[i] <= 10nums 的任何前缀或后缀的乘积都 保证 是一个 32-位 整数
方法 1.动态规划
思路:
状态定义:dp[i][0]表示从第 0 项到第 i 项范围内的子数组的最小乘积,dp[i][1]表示从第 0 项到第 i 项范围内的子数组的最大乘积
初始状态:dp[0][0]=nums[0], dp[0][1]=nums[0]
分情况讨论:
不和别人乘,就 nums[i]自己
num[i] 是负数,希望乘上前面的最大积
num[i] 是正数,希望乘上前面的最小积
状态转移方程:
dp[i] [0]=min(dp[i−1] [0]∗num[i] ,  dp[i−1] [1] ∗ num[i],  num[i])
dp[i] [1]=max(dp[i−1] [0]∗num[i] ,  dp[i−1] [1] ∗ num[i],  num[i])
状态压缩:dp[i][x]只与dp[i][x]-1,所以只需定义两个变量,prevMin = nums[0],prevMax = nums[0]
状态压缩之后的方程:
prevMin = Math.min(prevMin * num[i], prevMax * num[i], nums[i])
prevMax = Math.max(prevMin * num[i], prevMax * num[i], nums[i])
复杂度:时间复杂度O(n),空间复杂度O(1)
js:
 var maxProduct = (nums) => {    let res = nums[0]    let prevMin = nums[0]    let prevMax = nums[0]    let temp1 = 0, temp2 = 0    for (let i = 1; i < nums.length; i++) {        temp1 = prevMin * nums[i]        temp2 = prevMax * nums[i]        prevMin = Math.min(temp1, temp2, nums[i])        prevMax = Math.max(temp1, temp2, nums[i])        res = Math.max(prevMax, res)    }    return res}
       复制代码
 视频讲解:传送门
给你一个整数数组 coins ,表示不同面额的硬币;以及一个整数 amount ,表示总金额。
计算并返回可以凑成总金额所需的 最少的硬币个数 。如果没有任何一种硬币组合能组成总金额,返回 -1 。
你可以认为每种硬币的数量是无限的。
 
示例 1:
输入:coins = [1, 2, 5], amount = 11 输出:3 解释:11 = 5 + 5 + 1 示例 2:
输入:coins = [2], amount = 3 输出:-1 示例 3:
输入:coins = [1], amount = 0 输出:0 
提示:
1 <= coins.length <= 121 <= coins[i] <= 231 - 10 <= amount <= 104
不能用贪心做,反例,coins=[1, 3, 5, 6, 7],amount=30,用贪心先用最大的面额 7,在用 2 个 1,4 * 7 + 2 * 1 = 30,但是我们用 5 个 6,5 * 6 = 30 就能用最少的硬币兑换完成
方法 1.动态规划
思路:dp[i]表示兑换面额i所需要的最少硬币,因为硬币无限,所以可以自底向上计算dp[i],对于dp[0~i]的每个状态,循环coins数组,寻找可以兑换的组合,用i面额减去当前硬币价值,dp[i-coin]在加上一个硬币数就是dp[i],最后取最小值就是答案,状态转移方程就是dp[i] = Math.min(dp[i], dp[i - coin] + 1);
复杂度分析:时间复杂度是 O(sn),s 是兑换金额,n 是硬币数组长度,一共需要计算 s 个状态,每个状态需要遍历 n 个面额来转移状态。空间复杂度是O(s),也就是 dp 数组的长度
Js:
 var coinChange = function (coins, amount) {    let dp = new Array(amount + 1).fill(Infinity);//初始化dp数组    dp[0] = 0;//面额0只需要0个硬币兑换
    for (let i = 1; i <= amount; i++) {//循环面额        for (let coin of coins) {//循环硬币数组            if (i - coin >= 0) {//当面额大于硬币价值时                //dp[i - coin]: 当前面额i减当前硬币价值所需要的最少硬币                //dp[i] 可由 dp[i - coin] + 1 转换而来                dp[i] = Math.min(dp[i], dp[i - coin] + 1);            }        }    }
    return dp[amount] === Infinity ? -1 : dp[amount];//如果dp[amount] === Infinity,则无法兑换};
       复制代码
 视频讲解:传送门
假设你正在爬楼梯。需要 n 阶你才能到达楼顶。
每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?
 
示例 1:
输入:n = 2 输出:2 解释:有两种方法可以爬到楼顶。
1 阶 + 1 阶
2 阶
示例 2:
输入:n = 3 输出:3 解释:有三种方法可以爬到楼顶。
1 阶 + 1 阶 + 1 阶
1 阶 + 2 阶
2 阶 + 1 阶
 
提示:
1 <= n <= 45
方法 1.动态规划
Js:
 var climbStairs = function (n) {    const memo = [];    memo[1] = 1;    memo[2] = 2;    for (let i = 3; i <= n; i++) {        memo[i] = memo[i - 2] + memo[i - 1];//所以到第n阶台阶可以从第n-2或n-1上来    }    return memo[n];};
//状态压缩var climbStairs = (n) => {    let prev = 1;    let cur = 1;    for (let i = 2; i < n + 1; i++) {        [prev, cur] = [cur, prev + cur]        // const temp = cur;   // 暂存上一次的cur        // cur = prev + cur;   // 当前的cur = 上上次cur + 上一次cur        // prev = temp;        // prev 更新为 上一次的cur    }    return cur;}
       复制代码
 视频讲解:传送门
给你两个单词 word1 和 word2, 请返回将 word1 转换成 word2 所使用的最少操作数  。
你可以对一个单词进行如下三种操作:
插入一个字符删除一个字符替换一个字符 
示例 1:
输入:word1 = "horse", word2 = "ros"输出:3 解释:horse -> rorse (将 'h' 替换为 'r')rorse -> rose (删除 'r')rose -> ros (删除 'e')示例 2:
输入:word1 = "intention", word2 = "execution"输出:5 解释:intention -> inention (删除 't')inention -> enention (将 'i' 替换为 'e')enention -> exention (将 'n' 替换为 'x')exention -> exection (将 'n' 替换为 'c')exection -> execution (插入 'u') 
提示:
0 <= word1.length, word2.length <= 500word1 和 word2 由小写英文字母组成
方法 1.动态规划
思路:dp[i][j] 表示 word1 前 i 个字符和 word2 前 j 个字符的最少编辑距离。
如果word1[i-1] === word2[j-1],说明最后一个字符不用操作,此时dp[i][j] = dp[i-1][j-1],即此时的最小操作数和 word1 和 word2 都减少一个字符的最小编辑数相同
如果word1[i-1] !== word2[j-1],则分为三种情况
word1 删除最后一个字符,状态转移成dp[i-1][j],即dp[i][j] = dp[i-1][j] + 1,+1 指删除操作
word1 在最后加上一个字符,状态转移成dp[i][j-1],即dp[i][j] = dp[i][j-1] + 1,+1 指增加操作
word1 替换最后一个字符,状态转移成dp[i-1][j-1],即 dp[i] [j] = dp[i-1] [j-1] + 1,+1 指替换操作
复杂度:时间复杂度是O(mn) ,m 是 word1 的长度,n 是 word2 的长度。空间复杂度是O(mn) ,需要用 m * n 大小的二维数字存储状态。
Js:
 const minDistance = (word1, word2) => {    let dp = Array.from(Array(word1.length + 1), () => Array(word2.length + 1).fill(0));
    //初始化数组,word1前i个字符最少需要i次操作,比如i次删除变成word2    for (let i = 1; i <= word1.length; i++) {        dp[i][0] = i;    }
    //初始化数组,word2前i个字符最少需要i次操作,比如j次插入变成word1    for (let j = 1; j <= word2.length; j++) {        dp[0][j] = j;    }
    for (let i = 1; i <= word1.length; i++) {        //循环word1和word2        for (let j = 1; j <= word2.length; j++) {            if (word1[i - 1] === word2[j - 1]) {                //如果word1[i-1] === word2[j-1],说明最后一个字符不用操作。                dp[i][j] = dp[i - 1][j - 1];            } else {                //dp[i-1][j] + 1:对应删除                //dp[i][j-1] + 1:对应新增                // dp[i-1][j-1] + 1:对应替换操作                dp[i][j] = Math.min(dp[i - 1][j] + 1, dp[i][j - 1] + 1, dp[i - 1][j - 1] + 1);            }        }    }
    return dp[word1.length][word2.length];};
       复制代码
 视频讲解:传送门
一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。
问总共有多少条不同的路径?
 
示例 1:
输入:m = 3, n = 7 输出:28 示例 2:
输入:m = 3, n = 2 输出:3 解释:从左上角开始,总共有 3 条路径可以到达右下角。
向右 -> 向下 -> 向下
向下 -> 向下 -> 向右
向下 -> 向右 -> 向下
示例 3:
输入:m = 7, n = 3 输出:28 示例 4:
输入:m = 3, n = 3 输出:6 
提示:
1 <= m, n <= 100 题目数据保证答案小于等于 2 * 109
方法 1.动态规划
动画过大,点击查看
js:
 var uniquePaths = function (m, n) {    const f = new Array(m).fill(0).map(() => new Array(n).fill(0)); //初始dp数组    for (let i = 0; i < m; i++) {        //初始化列        f[i][0] = 1;    }    for (let j = 0; j < n; j++) {        //初始化行        f[0][j] = 1;    }    for (let i = 1; i < m; i++) {        for (let j = 1; j < n; j++) {            f[i][j] = f[i - 1][j] + f[i][j - 1];        }    }    return f[m - 1][n - 1];};
//状态压缩var uniquePaths = function (m, n) {    let cur = new Array(n).fill(1);    for (let i = 1; i < m; i++) {        for (let r = 1; r < n; r++) {            cur[r] = cur[r - 1] + cur[r];        }    }    return cur[n - 1];};
       复制代码
 视频讲解:传送门
给定一个正整数 n ,将其拆分为 k 个 正整数 的和( k >= 2 ),并使这些整数的乘积最大化。
返回 你可以获得的最大乘积 。
 
示例 1:
输入: n = 2 输出: 1 解释: 2 = 1 + 1, 1 × 1 = 1。示例 2:
输入: n = 10 输出: 36 解释: 10 = 3 + 3 + 4, 3 × 3 × 4 = 36。 
提示:
2 <= n <= 58
思路:dp[i]为正整数 i 拆分之后的最大乘积,循环数字 n,对每个数字进行拆分,取最大的乘积,状态转移方程:dp[i] = Math.max(dp[i], dp[i - j] * j, (i - j) * j),j*(i-j)表示把 i 拆分为j和 i-j 两个数相乘,j * dp[i-j]表示把i拆分成j和继续把(i-j)这个数拆分,取(i-j)拆分结果中的最大乘积与 j 相乘
复杂度:时间复杂度O(n^2),两层循环。空间复杂度O(n),dp数组的空间
js:
 var integerBreak = function (n) {    //dp[i]为正整数i拆分之后的最大乘积    let dp = new Array(n + 1).fill(0);    dp[2] = 1;
    for (let i = 3; i <= n; i++) {        for (let j = 1; j < i; j++) {            //j*(i-j)表示把i拆分为j和i-j两个数相乘            //j*dp[i-j]表示把i拆分成j和继续把(i-j)这个数拆分,取(i-j)拆分结果中的最大乘积与j相乘            dp[i] = Math.max(dp[i], dp[i - j] * j, (i - j) * j);        }    }    return dp[n];};
       复制代码
 视频讲解:传送门
给你一个字符串 s 和一个字符规律 p,请你来实现一个支持 '.' 和 '*' 的正则表达式匹配。
'.' 匹配任意单个字符'*' 匹配零个或多个前面的那一个元素所谓匹配,是要涵盖 整个 字符串 s 的,而不是部分字符串。
 示例 1:
输入:s = "aa", p = "a"输出:false 解释:"a" 无法匹配 "aa" 整个字符串。示例 2:
输入:s = "aa", p = "a*"输出:true 解释:因为 '*' 代表可以匹配零个或多个前面的那一个元素, 在这里前面的元素就是 'a'。因此,字符串 "aa" 可被视为 'a' 重复了一次。示例 3:
输入:s = "ab", p = "."输出:true 解释:"." 表示可匹配零个或多个('*')任意字符('.')。 
提示:
1 <= s.length <= 201 <= p.length <= 30s 只包含从 a-z 的小写字母。p 只包含从 a-z 的小写字母,以及字符 . 和 *。保证每次出现字符 * 时,前面都匹配到有效的字符
方法 1.动态规划
思路:dp[i][j] 表示 s 的前 i 个字符能否和 p 的前 j 个字符匹配,分为四种情况,看图
复杂度:时间复杂度O(mn),m,n 分别是字符串 s 和 p 的长度,需要嵌套循环 s 和 p。空间复杂度O(mn),dp 数组所占的空间
js:
 //dp[i][j]表示s的前i个字符能否和p的前j个字符匹配const isMatch = (s, p) => {    if (s == null || p == null) return false;//极端情况 s和p都是空 返回false
    const sLen = s.length, pLen = p.length;
    const dp = new Array(sLen + 1);//因为位置是从0开始的,第0个位置是空字符串 所以初始化长度是sLen + 1    for (let i = 0; i < dp.length; i++) {//初始化dp数组        dp[i] = new Array(pLen + 1).fill(false); // 将项默认为false    }    // base case s和p第0个位置是匹配的    dp[0][0] = true;    for (let j = 1; j < pLen + 1; j++) {//初始化dp的第一列,此时s的位置是0        //情况1:如果p的第j-1个位置是*,则j的状态等于j-2的状态        //例如:s='' p='a*' 相当于p向前看2个位置如果匹配,则*相当于重复0个字符        if (p[j - 1] == "*") dp[0][j] = dp[0][j - 2];    }    // 迭代    for (let i = 1; i < sLen + 1; i++) {        for (let j = 1; j < pLen + 1; j++) {
            //情况2:如果s和p当前字符是相等的 或者p当前位置是. 则当前的dp[i][j] 可由dp[i - 1][j - 1]转移过来            //当前位置相匹配,则s和p都向前看一位 如果前面所有字符相匹配 则当前位置前面的所有字符也匹配            //例如:s='XXXa' p='XXX.' 或者 s='XXXa' p='XXXa'            if (s[i - 1] == p[j - 1] || p[j - 1] == ".") {                dp[i][j] = dp[i - 1][j - 1];            } else if (p[j - 1] == "*") {//情况3:进入当前字符不匹配的分支 如果当前p是* 则有可能会匹配                //s当前位置和p前一个位置相同 或者p前一个位置等于. 则有三种可能                //其中一种情况能匹配 则当前位置的状态也能匹配                //dp[i][j - 2]:p向前看2个位置,相当于*重复了0次,                //dp[i][j - 1]:p向前看1个位置,相当于*重复了1次                //dp[i - 1][j]:s向前看一个位置,相当于*重复了n次                //例如 s='XXXa' p='XXXa*'                if (s[i - 1] == p[j - 2] || p[j - 2] == ".") {                    dp[i][j] = dp[i][j - 2] || dp[i][j - 1] || dp[i - 1][j];                } else {                    //情况4:s当前位置和p前2个位置不匹配,则相当于*重复了0次                    //例如 s='XXXb' p='XXXa*' 当前位置的状态和p向前看2个位置的状态相同                    dp[i][j] = dp[i][j - 2];                }            }        }    }    return dp[sLen][pLen]; // 长为sLen的s串 是否匹配 长为pLen的p串};
       复制代码
 视频讲解:传送门
一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish”)。
现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?
网格中的障碍物和空位置分别用 1 和 0 来表示。
 
示例 1:
输入:obstacleGrid = [[0,0,0],[0,1,0],[0,0,0]]输出:2 解释:3x3 网格的正中间有一个障碍物。从左上角到右下角一共有 2 条不同的路径:
向右 -> 向右 -> 向下 -> 向下
向下 -> 向下 -> 向右 -> 向右
示例 2:
输入:obstacleGrid = [[0,1],[0,0]]输出:1 
提示:
m == obstacleGrid.lengthn == obstacleGrid[i].length1 <= m, n <= 100obstacleGrid[i][j] 为 0 或 1
方法 1.动态规划
Js:
 var uniquePathsWithObstacles = function (obstacleGrid) {    const m = obstacleGrid.length;    const n = obstacleGrid[0].length;    const dp = Array(m)        .fill()        .map((item) => Array(n).fill(0)); //初始dp数组
    for (let i = 0; i < m && obstacleGrid[i][0] === 0; ++i) {        //初始列        dp[i][0] = 1;    }
    for (let i = 0; i < n && obstacleGrid[0][i] === 0; ++i) {        //初始行        dp[0][i] = 1;    }
    for (let i = 1; i < m; ++i) {        for (let j = 1; j < n; ++j) {            //遇到障碍直接返回0            dp[i][j] = obstacleGrid[i][j] === 1 ? 0 : dp[i - 1][j] + dp[i][j - 1];        }    }
    return dp[m - 1][n - 1];};
//状态压缩var uniquePathsWithObstacles = function (obstacleGrid) {    let m = obstacleGrid.length;    let n = obstacleGrid[0].length;    let dp = Array(n).fill(0); //用0填充,因为现在有障碍物,当前dp数组元素的值还和obstacleGrid[i][j]有关    dp[0] = 1; //第一列 暂时用1填充    for (let i = 0; i < m; i++) {        for (let j = 0; j < n; j++) {            if (obstacleGrid[i][j] == 1) {                //注意条件,遇到障碍物dp[j]就变成0,这里包含了第一列的情况                dp[j] = 0;            } else if (j > 0) {                //只有当j>0 不是第一列了才能取到j - 1                dp[j] += dp[j - 1];            }        }    }    return dp[n - 1];};
       复制代码
 买卖股票问题
第 5,6 道题相当于在第 2 道题的基础上加了冷冻期和手续费的条件。
视频讲解:传送门
限制条件
先买入才能卖出
不能同时参加多笔交易,再次买入时,需要先卖出
k >= 0才能进行交易,否则没有交易次数
定义操作
定义状态
举例
   dp[i][k][0]//第i天 还可以交易k次 手中没有股票  dp[i][k][1]//第i天 还可以交易k次 手中有股票
       复制代码
 
最终的最大收益是dp[n - 1][k][0]而不是dp[n - 1][k][1],因为最后一天卖出肯定比持有收益更高
状态转移方程
 // 今天没有持有股票,分为两种情况:// 1. dp[i - 1][k][0],昨天没有持有,今天不操作。 // 2. dp[i - 1][k][1] + prices[i] 昨天持有,今天卖出,今天手中就没有股票了。dp[i][k][0] = Math.max(dp[i - 1][k][0], dp[i - 1][k][1] + prices[i])
// 今天持有股票,分为两种情况:// 1.dp[i - 1][k][1] 昨天持有,今天不操作// 2.dp[i - 1][k - 1][0] - prices[i] 昨天没有持有,今天买入。dp[i][k][1] = Math.max(dp[i - 1][k][1], dp[i - 1][k - 1][0] - prices[i])
//最大利润就是这俩种情况的最大值
       复制代码
 给定一个数组 prices ,它的第 i 个元素 prices[i] 表示一支给定股票第 i 天的价格。
你只能选择 某一天 买入这只股票,并选择在 未来的某一个不同的日子 卖出该股票。设计一个算法来计算你所能获取的最大利润。
返回你可以从这笔交易中获取的最大利润。如果你不能获取任何利润,返回 0 。
 
示例 1:
输入:[7,1,5,3,6,4]输出:5 解释:在第 2 天(股票价格 = 1)的时候买入,在第 5 天(股票价格 = 6)的时候卖出,最大利润 = 6-1 = 5 。     注意利润不能是 7-1 = 6, 因为卖出价格需要大于买入价格;同时,你不能在买入前卖出股票。示例 2:
输入:prices = [7,6,4,3,1]输出:0 解释:在这种情况下, 没有交易完成, 所以最大利润为 0。 
提示:
1 <= prices.length <= 1050 <= prices[i] <= 104
状态转移方程
 //第i天不持有 由 第i-1天不持有然后不操作 和 第i-1天持有然后卖出 两种情况的最大值转移过来dp[i][1][0] = Math.max(dp[i - 1][1][0], dp[i - 1][1][1] + prices[i])//第i天持有 由 第i-1天持有然后不操作 和 第i-1天不持有然后买入 两种情况的最大值转移过来dp[i][1][1] = Math.max(dp[i - 1][1][1], dp[i - 1][0][0] - prices[i])            = Math.max(dp[i - 1][1][1], -prices[i]) // k=0时 没有交易次数,dp[i - 1][0][0] = 0
       复制代码
 
k是固定值 1,不影响结果,所以可以不用管,简化之后如下
 dp[i][0] = Math.max(dp[i - 1][0], dp[i - 1][1] + prices[i])dp[i][1] = Math.max(dp[i - 1][1], -prices[i])
       复制代码
 
完整代码
 //时间复杂度O(n) 空间复杂度O(n),dp数组第二维是常数const maxProfit = function (prices) {    let n = prices.length;    let dp = Array.from(new Array(n), () => new Array(2));    dp[0][0] = 0; //第0天不持有    dp[0][1] = -prices[0]; //第0天持有    for (let i = 1; i < n; i++) {        dp[i][0] = Math.max(dp[i - 1][0], dp[i - 1][1] + prices[i]);        dp[i][1] = Math.max(dp[i - 1][1], -prices[i]);    }    return dp[n - 1][0];};
       复制代码
 
状态压缩,dp[i] 只和 dp[i - 1] 有关,去掉一维
 //时间复杂度O(n) 空间复杂度O(1)const maxProfit = function (prices) {    let n = prices.length;    let dp = Array.from(new Array(n), () => new Array(2));    dp[0] = 0;    dp[1] = -prices[0];    for (let i = 1; i < n; i++) {        dp[0] = Math.max(dp[0], dp[1] + prices[i]);        dp[1] = Math.max(dp[1], -prices[i]);    }    return dp[0];};
//语意化const maxProfit = function (prices) {    let n = prices.length;    let sell = 0;    let buy = -prices[0];    for (let i = 1; i < n; i++) {        sell = Math.max(sell, buy + prices[i]);        buy = Math.max(buy, -prices[i]);    }    return sell;};
       复制代码
 给你一个整数数组 prices ,其中 prices[i] 表示某支股票第 i 天的价格。
在每一天,你可以决定是否购买和/或出售股票。你在任何时候 最多 只能持有 一股 股票。你也可以先购买,然后在 同一天 出售。
返回 你能获得的 最大 利润 。
 
示例 1:
输入:prices = [7,1,5,3,6,4]输出:7 解释:在第 2 天(股票价格 = 1)的时候买入,在第 3 天(股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5 - 1 = 4 。     随后,在第 4 天(股票价格 = 3)的时候买入,在第 5 天(股票价格 = 6)的时候卖出, 这笔交易所能获得利润 = 6 - 3 = 3 。     总利润为 4 + 3 = 7 。示例 2:
输入:prices = [1,2,3,4,5]输出:4 解释:在第 1 天(股票价格 = 1)的时候买入,在第 5 天 (股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5 - 1 = 4 。     总利润为 4 。示例 3:
输入:prices = [7,6,4,3,1]输出:0 解释:在这种情况下, 交易无法获得正利润,所以不参与交易可以获得最大利润,最大利润为 0 。 
提示:
1 <= prices.length <= 3 * 1040 <= prices[i] <= 104
状态转移方程
 //第i天不持有 由 第i-1天不持有然后不操作 和 第i-1天持有然后卖出 两种情况的最大值转移过来dp[i][k][0] = Math.max(dp[i - 1][k][0], dp[i - 1][k][1] + prices[i])//第i天持有 由 第i-1天持有然后不操作 和 第i-1天不持有然后买入 两种情况的最大值转移过来dp[i][k][1] = Math.max(dp[i - 1][k][1], dp[i - 1][k - 1][0] - prices[i])
       复制代码
 
k 同样不影响结果,简化之后如下
 dp[i][0] = Math.max(dp[i - 1][0], dp[i - 1][1] + prices[i])dp[i][1] = Math.max(dp[i - 1][1], dp[i - 1][0] - prices[i])
       复制代码
 
完整代码
 const maxProfit = function (prices) {    let n = prices.length;    let dp = Array.from(new Array(n), () => new Array(2));    dp[0][0] = 0; //第0天不持有    dp[0][1] = -prices[0]; //第0天买入 花了prices[0]    for (let i = 1; i < n; i++) {        dp[i][0] = Math.max(dp[i - 1][0], dp[i - 1][1] + prices[i]);        dp[i][1] = Math.max(dp[i - 1][1], dp[i - 1][0] - prices[i]);    }    return dp[n - 1][0];};
       复制代码
 
状态压缩,同样dp[i] 只和 dp[i - 1] 有关,去掉一维
 const maxProfit = function (prices) {    let n = prices.length;    let dp = Array.from(new Array(n), () => new Array(2));    dp[0] = 0;    dp[1] = -prices[0];    for (let i = 1; i < n; i++) {        dp[0] = Math.max(dp[0], dp[1] + prices[i]);        dp[1] = Math.max(dp[1], dp[0] - prices[i]);    }    return dp[0];};
//语意化const maxProfit = function (prices) {    let n = prices.length;    let sell = 0;    let buy = -prices[0];    for (let i = 1; i < n; i++) {        sell = Math.max(sell, buy + prices[i]);        buy = Math.max(buy, sell - prices[i]);    }    return sell;};
       复制代码
 给定一个数组,它的第 i 个元素是一支给定的股票在第 i 天的价格。
设计一个算法来计算你所能获取的最大利润。你最多可以完成 两笔 交易。
注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
 
示例 1:
输入:prices = [3,3,5,0,0,3,1,4]输出:6 解释:在第 4 天(股票价格 = 0)的时候买入,在第 6 天(股票价格 = 3)的时候卖出,这笔交易所能获得利润 = 3-0 = 3 。     随后,在第 7 天(股票价格 = 1)的时候买入,在第 8 天 (股票价格 = 4)的时候卖出,这笔交易所能获得利润 = 4-1 = 3 。示例 2:
输入:prices = [1,2,3,4,5]输出:4 解释:在第 1 天(股票价格 = 1)的时候买入,在第 5 天 (股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4 。        注意你不能在第 1 天和第 2 天接连购买股票,之后再将它们卖出。        因为这样属于同时参与了多笔交易,你必须在再次购买前出售掉之前的股票。示例 3:
输入:prices = [7,6,4,3,1] 输出:0 解释:在这个情况下, 没有交易完成, 所以最大利润为 0。示例 4:
输入:prices = [1]输出:0 
提示:
1 <= prices.length <= 1050 <= prices[i] <= 105
状态转移方程
 dp[i][k][0] = Math.max(dp[i - 1][k][0], dp[i - 1][k][1] + prices[i])dp[i][k][1] = Math.max(dp[i - 1][k][1], dp[i - 1][k - 1][0] - prices[i])
       复制代码
 
k 对结果有影响 不能舍去,只能对 k 进行循环
 for (let i = 0; i < n; i++) {  for (let k = maxK; k >= 1; k--) {    dp[i][k][0] = Math.max(dp[i - 1][k][0], dp[i - 1][k][1] + prices[i]);    dp[i][k][1] = Math.max(dp[i - 1][k][1], dp[i - 1][k - 1][0] - prices[i]);  }}
//k=2,直接写出循环的结果dp[i][2][0] = Math.max(dp[i - 1][2][0], dp[i - 1][2][1] + prices[i])dp[i][2][1] = Math.max(dp[i - 1][2][1], dp[i - 1][1][0] - prices[i])
dp[i][1][0] = Math.max(dp[i - 1][1][0], dp[i - 1][1][1] + prices[i])dp[i][1][1] = Math.max(dp[i - 1][1][1], dp[i - 1][0][0] - prices[i])            = Math.max(dp[i - 1][1][1], -prices[i])// k=0时 没有交易次数,dp[i - 1][0][0] = 0
//去掉i这一维度dp[2][0] = Math.max(dp[2][0], dp[2][1] + prices[i])dp[2][1] = Math.max(dp[2][1], dp[1][0] - prices[i])
dp[1][0] = Math.max(dp[1][0], dp[1][1] + prices[i])dp[1][1] = Math.max(dp[1][1], dp[0][0] - prices[i])            = Math.max(dp[1][1], -prices[i])// k=0时 没有交易次数,dp[i - 1][0][0] = 0
       复制代码
 
完整代码
 //和前面一样 我们直接降维const maxProfit = function (prices) {    let buy_1 = -prices[0], sell_1 = 0    let buy_2 = -prices[0], sell_2 = 0    let n = prices.length    for (let i = 1; i < n; i++) {        sell_2 = Math.max(sell_2, buy_2 + prices[i])        buy_2 = Math.max(buy_2, sell_1 - prices[i])        sell_1 = Math.max(sell_1, buy_1 + prices[i])        buy_1 = Math.max(buy_1, -prices[i])    }    return sell_2}
       复制代码
 给定一个整数数组 prices ,它的第 i 个元素 prices[i] 是一支给定的股票在第 i 天的价格。
设计一个算法来计算你所能获取的最大利润。你最多可以完成 k 笔交易。
注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
 
示例 1:
输入:k = 2, prices = [2,4,1]输出:2 解释:在第 1 天 (股票价格 = 2) 的时候买入,在第 2 天 (股票价格 = 4) 的时候卖出,这笔交易所能获得利润 = 4-2 = 2 。示例 2:
输入:k = 2, prices = [3,2,6,5,0,3]输出:7 解释:在第 2 天 (股票价格 = 2) 的时候买入,在第 3 天 (股票价格 = 6) 的时候卖出, 这笔交易所能获得利润 = 6-2 = 4 。     随后,在第 5 天 (股票价格 = 0) 的时候买入,在第 6 天 (股票价格 = 3) 的时候卖出, 这笔交易所能获得利润 = 3-0 = 3 。 
提示:
0 <= k <= 1000 <= prices.length <= 10000 <= prices[i] <= 1000
 const maxProfit = function (k, prices) {    let n = prices.length;    let profit = new Array(k);//和123题一样 求出所有k的状态    // 初始化k次交易买入卖出的利润    for (let j = 0; j <= k; j++) {        profit[j] = {            buy: -prices[0],//表示有股票            sell: 0,//表示没有股票        };    }    for (let i = 0; i < n; i++) {        for (let j = 1; j <= k; j++) {            //122题可以交易无数次,188交易k次,所以直接在加一层k循环就可以              //122最后的递推方程:              //sell = Math.max(sell, buy + prices[i]);                //buy = Math.max(buy, -prices[i]);            profit[j] = {                sell: Math.max(profit[j].sell, profit[j].buy + prices[i]),                buy: Math.max(profit[j].buy, profit[j - 1].sell - prices[i]),            };        }    }    return profit[k].sell; //返回第k次清空手中的股票之后的最大利润};
       复制代码
 给定一个整数数组 prices,其中第  prices[i] 表示第 i 天的股票价格 。
设计一个算法计算出最大利润。在满足以下约束条件下,你可以尽可能地完成更多的交易(多次买卖一支股票):
卖出股票后,你无法在第二天买入股票 (即冷冻期为 1 天)。注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
 
示例 1:
输入: prices = [1,2,3,0,2]输出: 3 解释: 对应的交易状态为: [买入, 卖出, 冷冻期, 买入, 卖出]示例 2:
输入: prices = [1]输出: 0 
提示:
1 <= prices.length <= 50000 <= prices[i] <= 1000
状态转移方程
 dp[i][k][0] = Math.max(dp[i - 1][k][0], dp[i - 1][k][1] + prices[i])//冷却时间1天,所以要从 i - 2 天转移状态//买入,卖出 ---- 冷冻期 ----  买入,卖出dp[i][k][1] = Math.max(dp[i - 1][k][1], dp[i - 2][k - 1][0] - prices[i])
       复制代码
 
题目不限制 k 的大小,可以舍去
 dp[i][0] = Math.max(dp[i - 1][0], dp[i - 1][1] + prices[i])dp[i][1] = Math.max(dp[i - 1][1], dp[i - 2][0] - prices[i])
//降维idp[0] = Math.max(dp[0], dp[1] + prices[i])dp[1] = Math.max(dp[1], profit_freeze - prices[i])
       复制代码
 
完整代码
 const maxProfit = function (prices) {    let n = prices.length;    let buy = -prices[0];//手中有股票    let sell = 0;//没有股票    let profit_freeze = 0;    for (let i = 1; i < n; i++) {        let temp = sell;        sell = Math.max(sell, buy + prices[i]);        buy = Math.max(buy, profit_freeze - prices[i]);        profit_freeze = temp;    }    return sell;};
       复制代码
 给定一个整数数组 prices,其中 prices[i]表示第 i 天的股票价格 ;整数 fee 代表了交易股票的手续费用。
你可以无限次地完成交易,但是你每笔交易都需要付手续费。如果你已经购买了一个股票,在卖出它之前你就不能再继续购买股票了。
返回获得利润的最大值。
注意:这里的一笔交易指买入持有并卖出股票的整个过程,每笔交易你只需要为支付一次手续费。
 
示例 1:
输入:prices = [1, 3, 2, 8, 4, 9], fee = 2 输出:8 解释:能够达到的最大利润:
在此处买入 prices[0] = 1 在此处卖出 prices[3] = 8 在此处买入 prices[4] = 4 在此处卖出 prices[5] = 9 总利润: ((8 - 1) - 2) + ((9 - 4) - 2) = 8 示例 2:
输入:prices = [1,3,7,5,10,3], fee = 3 输出:6 
提示:
1 <= prices.length <= 5 * 1041 <= prices[i] < 5 * 1040 <= fee < 5 * 104
状态转移方程
 //每次交易要支付手续费 我们定义在卖出的时候扣手续费dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] + prices[i] - fee)dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] - prices[i])
       复制代码
 
完整代码
 const maxProfit = function (prices, fee) {    let sell = 0;//卖出    let buy = -prices[0];//买入    for (let i = 1; i < prices.length; i++) {        sell = Math.max(sell, buy + prices[i] - fee);        buy = Math.max(buy, sell - prices[i]);    }    return sell;};
       复制代码
 
评论