写点什么

4. 基于 Label studio 的训练数据标注指南:情感分析任务观点词抽取、属性抽取

作者:汀丶
  • 2023-03-05
    浙江
  • 本文字数:1773 字

    阅读完需:约 6 分钟

情感分析任务 Label Studio 使用指南


1.基于Label studio的训练数据标注指南:信息抽取(实体关系抽取)、文本分类等


2.基于Label studio的训练数据标注指南:(智能文档)文档抽取任务、PDF、表格、图片抽取标注等


3.基于Label studio的训练数据标注指南:文本分类任务


4.基于Label studio的训练数据标注指南:情感分析任务观点词抽取、属性抽取


目录


1. label-studio 安装

本内容在以下环境进行测试安装:


  • python == 3.9.12

  • label-studio == 1.6.0


在终端(terminal)使用 pip 安装 label-studio:


pip install label-studio==1.6.0
复制代码


安装完成后,运行以下命令行:


label-studio start
复制代码


在浏览器打开http://localhost:8080/,输入用户名和密码登录,开始使用 label-studio 进行标注。

2. label-studio 项目创建

创建项目之前,需要先确定标注的任务类型以及需要标注哪些内容,然后点击创建(Create)开始创建一个新的项目,填写项目名称、描述。



如果数据已经准备好,可以在此进行导入数据。



接下来,根据需要标注的任务类型,选择适合的任务。在本项目中,默认会包含两种类型的任务:语句级情感分类任务和属性级情感分析任务。由于这两者都属于自然语言处理(NLP)任务,因此可以点击 Natural Language Processing 选项,在该选项下面进行选择相应的子项任务。


  • 如果标注语句级情感分类任务,请选择Text Classification



  • 如果标注属性级情感分析任务,比如属性-观点词-情感极性三元组的信息抽取,请选择Relation Extraction



最后点击保存即可。

3. 情感分析任务标注

3.1 语句级情感分类任务

这里对应的任务类型为Text Classification,在标注之前,需要设定正向负向的标签,然后保存即可。



设定好标签后,即可开始进行标注,选择正向或负向,最后点击提交,便标注好一条数据。


3.2 属性级情感分析任务

在本项目中,属性级的情感分析需要配置的标注任务类型为Relation Extraction,包括属性抽取、观点抽取、属性-观点抽取、属性-情感极性抽取、属性-情感极性-观点词三元组抽取等任务。其中属性-情感极-观点词(A-S-O)三元组抽取是最常见的任务之一,下面优先讲解该任务的标注规则。

3.2.1 属性-情感极性-观点词抽取

属性-情感极性-观点词(A-S-O)三元组抽取标注内容涉及两类标签:Span 类型标签和 Relation 类型标签。其中 Span 标签用于定位文本批评中属性、观点词和情感极性三类信息,Relation 类型标签用于设置评价维度和观点词、情感倾向之间的关系。

(1)Span 类型标签

这里需要定位属性、情感极性、观点词三类信息,在标注时,需要将属性和情感极性进行组合,形成复合标签。具体来讲,设定评价维度##正向用于定位情感倾向为正向的属性,评价维度##负向用于定位情感倾向为负向的属性。另外,利用标注标签观点词定位语句中的观点词。


(2)Relation 类型标签

这里只涉及到 1 中 Relation 类型标签,即评价维度观点词的映射关系。这里可以设置一下两者关系的名称,即点击 Code,然后配置关系名称(这里将两者关系设置为观点词),最后点击保存即可。



在设置好 Span 类型和 Relation 标签之后,便可以开始进行标注数据了。


3.2.2 属性-情感极性抽取

如 3.2.1 所述,本项目中针对属性-情感极性(A-S)抽取任务,采用Span的形式进行标注。设定评价维度##正向用于定位情感倾向为正向的属性,评价维度##负向用于定位情感倾向为负向的属性。下图展示了关于属性-情感极性抽取任务的标注示例。


3.2.3 属性-观点词抽取

针对属性-观点词(A-O)抽取任务,采用Relation的形式进行标注。这需要将属性对应标注标签设定为评价维度,观点词设定为观点词。下图展示了关于属性-观点词抽取任务的标注示例。


3.2.4 属性抽取

针对属性(A)抽取任务,采用Span的形式进行标注。 这需要将属性对应的标注标签设定为评价维度。下图展示了关于属性抽取任务的标注示例。


3.2.4 观点词抽取

针对观点词(O)抽取任务,采用Span的形式进行标注。 这需要将观点词对应的标注标签设定为观点词。下图展示了关于观点词抽取任务的标注示例。


4. 导出标注数据

勾选已标注文本 ID,点击 Export 按钮,选择导出的文件类型为JSON,导出数据:


5. References

发布于: 刚刚阅读数: 3
用户头像

汀丶

关注

本博客将不定期更新关于NLP等领域相关知识 2022-01-06 加入

本博客将不定期更新关于机器学习、强化学习、数据挖掘以及NLP等领域相关知识,以及分享自己学习到的知识技能,感谢大家关注!

评论

发布
暂无评论
4.基于Label studio的训练数据标注指南:情感分析任务观点词抽取、属性抽取_自然语言处理_汀丶_InfoQ写作社区