直观易用的大模型开发框架 LangChain,你会了没?
目前 LangChain 框架在集团大模型接入手册中的学习案例有限,为了让大家可以快速系统地了解 LangChain 大模型框架并开发,产出此文章。本文章包含了 LangChain 的简介、基本组件和可跑的代码案例(包含 Embedding、Completion、Chat 三种功能模型声明)。读完此文章,您可利用集团申请的 api key+LangChain 框架进行快速开发,体验大语言模型的魅力。
一、简介
LangChain 作为一个大语言模型(LLM)集成框架,旨在简化使用大语言模型的开发过程,包括如下组件:
LangChain 框架优点:
1.多模型支持:LangChain 支持多种流行的预训练语言模型,如 OpenAI GPT-3、Hugging Face Transformers 等,为用户提供了广泛的选择。
2.易于集成:LangChain 提供了简单直观的 API,可以轻松集成到现有的项目和工作流中,无需深入了解底层模型细节。
3.强大的工具和组件:LangChain 内置了多种工具和组件,如文档加载器、文本转换器、提示词模板等,帮助开发者处理复杂的语言任务。
4.可扩展性:LangChain 允许开发者通过自定义工具和组件来扩展框架的功能,以适应特定的应用需求。
5.性能优化:LangChain 考虑了性能优化,支持高效地处理大量数据和请求,适合构建高性能的语言处理应用。
6.Python 和 Node.js 支持:开发者可以使用这两种流行的编程语言来构建和部署 LangChain 应用程序。
由于支持 Node.js ,前端大佬们可使用 Javascript 语言编程从而快速利用大模型能力,无需了解底层大模型细节。同时也支持 JAVA 开发,后端大佬同样适用。
本篇文章案例聚焦 Python 语言开发。
二、基本组件
•Prompt【可选】
◦告知 LLM 内 system 服从什么角色
◦占位符:设置{input}以便动态填补后续用户输入
•Retriever【可选】
◦LangChain 一大常见应用场景就是 RAG(Retrieval-Augmented Generation),RAG 为了解决 LLM 中语料的通用和时间问题,通过增加最新的或者垂类场景下的外部语料,Embedding 化后存入向量数据库,然后模型从外部语料中寻找相似语料辅助回复
•Models
◦可做 Embedding 化,语句补全,对话等
支持的模型选择,OpenAI 为例
•Parser【可选】
◦StringParser,JsonParser 等
◦将模型输出的 AIMessage 转化为 string, json 等易读格式
上述介绍了 Langchain 开发中常见的 components,接下来将通过一简单案例将上述组件串起来,让大家更熟悉 Langchain 中的组件及接口调用。
三、小试牛刀
输出:
其中 chain = prompt | model | output_parser 按照数据传输顺序将上述声明的 prompt template、大语言模型、输出格式串联起来(Chain),逻辑清晰直接。
代码案例:调用 Embedding、Completion、Chat Model
•将文本转化为 Embedding : langchain_community.embeddings <-> OpenAIEmbeddings
•文本补全:langchain_community.llms <-> OpenAI completion
•对话模型:langchain_openai <-> ChatOpenAI
四、总结
LangChain 作为一个使用流程直观的大模型开发框架,掌握它优势多多。希望您可以通过上述内容入门并熟悉 LangChain 框架,欢迎多多交流!
版权声明: 本文为 InfoQ 作者【京东科技开发者】的原创文章。
原文链接:【http://xie.infoq.cn/article/b94a45cf62aafc3197218af18】。文章转载请联系作者。
评论