写点什么

打造垂直领域内容的问答机器人

  • 2024-08-13
    北京
  • 本文字数:1370 字

    阅读完需:约 4 分钟

更多软件测试学习资料戳

简介

在大模型问世之后,其中一个最核心的功能就是问答机器人。但是若直接将问题抛给 ChatGPT,仍然解决不了以下限制:

  1. 相关的关联数据需要联网。

  2. 相关的关联数据是 GPT 也不知道的私密数据。

而在前面介绍 RAG 检索增强生成的时候也同样提到了这一点。

应用场景

垂直领域内容的问答机器人的应用场景非常多,比如金融、医疗、电商等。

如果是针对于互联网相关的从业人员,比如开发、测试、产品等,我们还可以让其帮助我们进行以下多种类型的工作:

  1. 公司知识库检索。

  2. 需求分析。

  3. 用例评审、测试用例生成

  4. 代码生成。

实践演练

那么如果要完成一个垂直领域内容的问答机器人,其实也是有多种方式的:

  1. openai 官方在 2023 年末做了一次重大更新,推出了官方的 assistant,可以通过官方的 assistant 完成一个问答机器人。

  2. 其他方式,比如通过 RAG 结合向量数据库,或结合 LangChain 等人工智能应用框架完成。


使用官方的 assistant

点击查看官方 assistant 使用教程

如果使用 assistant 创建一个垂直领域内容的问答机器人,那么主要需要的,就是 Retrieval 的能力,注意这个能力至少需要 gpt-3.5-turbo-1106(支持较新版本)或 gpt-4-turbo-preview 型号。

  1. 编写好 Instructions,注意角色设定越详细越清楚越好。

  2. 将 Retrieval 的配置打开,再将需要给机器人检索的文件上传上去(注意,文件越大 token 消费越高)。

  3. 输入想要检索的信息的 prompt。

  4. 即可获取到文档内的信息内容。

  5. 注意,上传的文件有格式限制,支持的格式为官方支持的格式

通过编写代码实现

import timefrom openai import OpenAIimport osclient = OpenAI(api_key=os.environ.get("OPENAI_API_KEY"))# 1. 绑定课程文件file = client.files.create(    file=open("课程数据.md", "rb"),    purpose='assistants')# 2. 创建课程处理机器人assistant = client.beta.assistants.create(    instructions="你是一个课程维护者,你需要清楚的知道课程名称以及其对应的url地址。",    model="gpt-4-turbo-preview",    tools=[{"type": "retrieval"}],    file_ids=[file.id])# 3. 创建一个线程thread = client.beta.threads.create()# 4. 创建一条消息message = client.beta.threads.messages.create(    thread_id=thread.id,    role="user",    content="请告诉我超时处理对应的视频地址")# 5. 提问run = client.beta.threads.runs.create(    thread_id=thread.id,    assistant_id=assistant.id,    instructions="你是一个课程维护者,你需要清楚的知道课程名称以及其对应的url地址。",)# 6. 循环查询问题是否已经解决完成def wait_on_run(run, thread):    while run.status == "queued" or run.status == "in_progress":        run = client.beta.threads.runs.retrieve(            thread_id=thread.id,            run_id=run.id,        )        time.sleep(0.5)    return runwait_on_run(run, thread)# 6. 获取历史消息messages = client.beta.threads.messages.list(thread_id=thread.id).model_dump_json(indent=2)print(messages)
复制代码

其他方式

  1. 结合向量数据库完成。

  2. 结合 LangChain 等人工智能应用框架完成。

总结

  1. 垂直领域内容的问答机器人的产品需求。

  2. 垂直领域内容的问答机器人的实现方案。

  3. 使用官方 assistant 实现垂直领域的问答机器人。

用户头像

社区:ceshiren.com 微信:ceshiren2023 2022-08-29 加入

微信公众号:霍格沃兹测试开发 提供性能测试、自动化测试、测试开发等资料、实事更新一线互联网大厂测试岗位内推需求,共享测试行业动态及资讯,更可零距离接触众多业内大佬

评论

发布
暂无评论
打造垂直领域内容的问答机器人_测试_测吧(北京)科技有限公司_InfoQ写作社区