写点什么

秒杀系统常见问题—如何避免库存超卖?

  • 2023-05-26
    湖南
  • 本文字数:4234 字

    阅读完需:约 14 分钟

先看问题

首先上一串代码

public String buy(Long goodsId, Integer goodsNum) {    //查询商品库存    Goods goods = goodsMapper.selectById(goodsId);    //如果当前库存为0,提示商品已经卖光了    if (goods.getGoodsInventory() <= 0) {        return "商品已经卖光了!";    }    //如果当前购买数量大于库存,提示库存不足    if (goodsNum > goods.getGoodsInventory()) {        return "库存不足!";    }    //更新库存    goods.setGoodsInventory(goods.getGoodsInventory() - goodsNum);    goodsMapper.updateById(goods);    return "购买成功!";}
复制代码

我们看一下这串代码,逻辑用流程图表示如下:

从图上看,逻辑还是很清晰明了的,而且单测的话,也测试不出来什么 bug。但是在秒杀场景下,问题可就大发了,100 件商品可能卖出 1000 单,出现严重资损,这下就真的需要杀个程序员祭天了。

问题分析

正常情况下,如果请求是一个一个接着来的话,这串代码也不会有问题,如下图:

不同的时刻不同的请求,每次拿到的商品库存都是更新过之后的,逻辑是 ok 的。


那为啥会出现超卖问题呢?首先我们给这串代码增加一个场景:商品秒杀(非秒杀场景难以复现超卖问题)。秒杀场景的特点如下:


  • 高并发处理:秒杀场景下,可能会有大量的购物者同时涌入系统,因此需要具备高并发处理能力,保证系统能够承受高并发访问,并提供快速的响应。

  • 快速响应:秒杀场景下,由于时间限制和竞争激烈,需要系统能够快速响应购物者的请求,否则可能会导致购买失败,影响购物者的购物体验。

  • 分布式系统: 秒杀场景下,单台服务器扛不住请求高峰,分布式系统可以提高系统的容错能力和抗压能力,非常适合秒杀场景。


在这种场景下,请求不可能是一个接一个这种,而是成千上万个请求同时打过来,那么就会出现多个请求在同一时刻查询库存,如下图:

如果在同一时刻查询商品库存表,那么得到的商品库存也肯定是相同的,判断的逻辑也是相同的。


举个例子,现在商品的库存是 10 件,请求 1 买 6 件,请求 2 买 5 件,由于两次请求查询到的库存都是 10,肯定是可以卖的。但是真实情况是 5+6=11>10,明显有问题!这两笔请求必然有一笔失败才是对的!

那么,这种问题怎么解决呢?

解决方案

从上面例子来看,问题好像是由于我们每次拿到的库存都是一样的,才导致库存超卖问题,那是不是只要保证每次拿到的库存都是最新的话,这个问题不就迎刃而解了吗!


在说方案前,先把我的测试表结构贴出来:

CREATE TABLE `t_goods` (  `id` bigint NOT NULL COMMENT '物理主键',  `goods_name` varchar(64) DEFAULT NULL COMMENT '商品名称',  `goods_pic` varchar(255) DEFAULT NULL COMMENT '商品图片',  `goods_desc` varchar(255) DEFAULT NULL COMMENT '商品描述信息',  `goods_inventory` int DEFAULT NULL COMMENT '商品库存',  `goods_price` decimal(10,2) DEFAULT NULL COMMENT '商品价格',  `create_time` datetime DEFAULT NULL COMMENT '创建时间',  `update_time` datetime DEFAULT NULL COMMENT '更新时间',  PRIMARY KEY (`id`)) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;
复制代码

方法一、redis 分布式锁

Redisson 介绍

官方介绍:Redisson 是一个基于 Redis 的 Java 驻留内存数据网格(In-Memory Data Grid)。它封装了 Redis 客户端 API,并提供了一个分布式锁、分布式集合、分布式对象、分布式 Map 等常用的数据结构和服务。Redisson 支持 Java 6 以上版本和 Redis 2.6 以上版本,并且采用编解码器和序列化器来支持任何对象类型。 Redisson 还提供了一些高级功能,比如异步 API 和响应式流式 API。它可以在分布式系统中被用来实现高可用性、高性能、高可扩展性的数据处理。

Redisson 使用


引入

<!--使用redisson作为分布式锁--><dependency>    <groupId>org.redisson</groupId>    <artifactId>redisson</artifactId>    <version>3.16.8</version></dependency>
复制代码

注入对象


RedissonConfig.java

import org.redisson.Redisson;import org.redisson.api.RedissonClient;import org.redisson.config.Config;import org.springframework.context.annotation.Bean;import org.springframework.context.annotation.Configuration;
@Configurationpublic class RedissonConfig { /** * 所有对Redisson的使用都是通过RedissonClient对象 * * @return */ @Bean(destroyMethod = "shutdown") public RedissonClient redissonClient() { // 创建配置 指定redis地址及节点信息 Config config = new Config(); config.useSingleServer().setAddress("redis://127.0.0.1:6379").setPassword("123456");
// 根据config创建出RedissonClient实例 RedissonClient redissonClient = Redisson.create(config); return redissonClient;
}}
复制代码
代码优化
public String buyRedisLock(Long goodsId, Integer goodsNum) {    RLock lock = redissonClient.getLock("goods_buy");    try {        //加分布式锁        lock.lock();        //查询商品库存        Goods goods = goodsMapper.selectById(goodsId);        //如果当前库存为0,提示商品已经卖光了        if (goods.getGoodsInventory() <= 0) {                return "商品已经卖光了!";        }        //如果当前购买数量大于库存,提示库存不足        if (goodsNum > goods.getGoodsInventory()) {                return "库存不足!";        }        //更新库存        goods.setGoodsInventory(goods.getGoodsInventory() - goodsNum);        goodsMapper.updateById(goods);        return "购买成功!";    } catch (Exception e) {        log.error("秒杀失败");    } finally {        lock.unlock();    }    return "购买失败";}
复制代码

加上 Redisson 分布式锁之后,使得请求由异步变为同步,让购买操作一个一个进行,解决了库存超卖问题,但是会让用户等待的时间加长,影响了用户体验。

方法二、MySQL 的行锁

行锁介绍

MySQL 的行锁是一种针对行级别数据的锁,它可以锁定某个表中的某一行数据,以保证在锁定期间,其他事务无法修改该行数据,从而保证数据的一致性和完整性。特点如下:

  • MySQL 的行锁只能在 InnoDB 存储引擎中使用。

  • 行锁需要有索引才能实现,否则会自动锁定整张表。

  • 可以通过使用“SELECT ... FOR UPDATE”和“SELECT ... LOCK IN SHARE MODE”语句来显式地使用行锁。


总之,行锁可以有效地保证数据的一致性和完整性,但是过多的行锁也会导致性能问题,因此在使用行锁时需要谨慎考虑,避免出现性能瓶颈。


那么回到库存超卖这个问题上来,我们可以在一开始查询商品库存的时候增加一个行锁,实现非常简单,也就是将

 //查询商品库存Goods goods = goodsMapper.selectById(goodsId);
原始查询SQLSELECT * FROM t_goods WHERE id = #{goodsId}
改写为 SELECT * FROM t_goods WHERE id = #{goodsId} for update
复制代码

那么被查询到的这行商品库存信息就会被锁住,其他请求想要读取这行数据时就需要等待当前请求结束了,这样就做到了每次查询库存都是最新的。不过同 Redisson 分布式锁一样,会让用户等待的时间加长,影响用户体验。

方法三、乐观锁

乐观锁机制类似 java 中的 cas 机制,在查询数据的时候不加锁,只有更新数据的时候才比对数据是否已经发生过改变,没有改变则执行更新操作,已经改变了则进行重试。

商品表增加 version 字段并初始化数据为 0
`version` int(11) DEFAULT NULL COMMENT '版本'
复制代码
将更新 SQL 修改如下
update t_goodsset goods_inventory = goods_inventory - #{goodsNum},     version         = version + 1where id = #{goodsId}and version = #{version}
复制代码
Java 代码修改如下
public String buyVersion(Long goodsId, Integer goodsNum) {    //查询商品库存(该语句使用了行锁)    Goods goods = goodsMapper.selectById(goodsId);    //如果当前库存为0,提示商品已经卖光了    if (goods.getGoodsInventory() <= 0) {        return "商品已经卖光了!";    }    if (goodsMapper.updateInventoryAndVersion(goodsId, goodsNum, goods.getVersion()) > 0) {      return "购买成功!";    }    return "库存不足!";}
复制代码

通过增加了版本号的控制,在扣减库存的时候在 where 条件进行版本号的比对。实现查询的是哪一条记录,那么就要求更新的是哪一条记录,在查询到更新的过程中版本号不能变动,否则更新失败。

方法四、where 条件和 unsigned 非负字段限制

前面的 Redisson 分布式锁和行锁都是通过每次都拿到最新的库存从而解决超卖问题,那换一种思路:保证在扣除库存的时候,库存一定大于购买量是不是也可以解决这个问题呢?答案是可以的。回到上面的代码:

 //更新库存goods.setGoodsInventory(goods.getGoodsInventory() - goodsNum);goodsMapper.updateById(goods);
复制代码

我们把库存的扣减写在了代码中,这样肯定是不行的,因为在分布式系统中我们获取到的库存可能都是一样的,应该把库存的扣减逻辑放到 SQL 中,即:

 update t_goods set goods_inventory = goods_inventory - #{goodsNum} where id = #{goodsId}
复制代码

上面的 SQL 保证了每次获取的库存都是取数据库的库存,不过我们还需要加一个判断:保证库存大于购买量,即:

update t_goodsset goods_inventory = goods_inventory - #{goodsNum}where id = #{goodsId}AND (goods_inventory - #{goodsNum}) >= 0
复制代码

那么上面那段 Java 代码也需修改一下:

public String buySqlUpdate(Long goodsId, Integer goodsNum) {    //查询商品库存(该语句使用了行锁)    Goods goods = goodsMapper.queryById(goodsId);    //如果当前库存为0,提示商品已经卖光了    if (goods.getGoodsInventory() <= 0) {        return "商品已经卖光了!";    }    //此处需要判断更新操作是否成功    if (goodsMapper.updateInventory(goodsId, goodsNum) > 0) {        return "购买成功!";     }    return "库存不足!";}
复制代码

还有一种办法和 where 条件一样,就是 unsigned 非负字段限制,把库存字段设置为 unsigned 非负字段类型,那么在扣减时也不会出现扣成负数的情况。

总结一下

方案有很多,用法结合实际业务来看,没有最优,只有更优,甚至可以几种方案组合起来解决问题。


作者:summo

链接:https://juejin.cn/post/7236593511008976956

来源:稀土掘金

用户头像

还未添加个人签名 2021-07-28 加入

公众号:该用户快成仙了

评论

发布
暂无评论
秒杀系统常见问题—如何避免库存超卖?_秒杀系统_做梦都在改BUG_InfoQ写作社区