先看问题
首先上一串代码
public String buy(Long goodsId, Integer goodsNum) { //查询商品库存 Goods goods = goodsMapper.selectById(goodsId); //如果当前库存为0,提示商品已经卖光了 if (goods.getGoodsInventory() <= 0) { return "商品已经卖光了!"; } //如果当前购买数量大于库存,提示库存不足 if (goodsNum > goods.getGoodsInventory()) { return "库存不足!"; } //更新库存 goods.setGoodsInventory(goods.getGoodsInventory() - goodsNum); goodsMapper.updateById(goods); return "购买成功!";}
复制代码
我们看一下这串代码,逻辑用流程图表示如下:
从图上看,逻辑还是很清晰明了的,而且单测的话,也测试不出来什么 bug。但是在秒杀场景下,问题可就大发了,100 件商品可能卖出 1000 单,出现严重资损,这下就真的需要杀个程序员祭天了。
问题分析
正常情况下,如果请求是一个一个接着来的话,这串代码也不会有问题,如下图:
不同的时刻不同的请求,每次拿到的商品库存都是更新过之后的,逻辑是 ok 的。
那为啥会出现超卖问题呢?首先我们给这串代码增加一个场景:商品秒杀(非秒杀场景难以复现超卖问题)。秒杀场景的特点如下:
高并发处理:秒杀场景下,可能会有大量的购物者同时涌入系统,因此需要具备高并发处理能力,保证系统能够承受高并发访问,并提供快速的响应。
快速响应:秒杀场景下,由于时间限制和竞争激烈,需要系统能够快速响应购物者的请求,否则可能会导致购买失败,影响购物者的购物体验。
分布式系统: 秒杀场景下,单台服务器扛不住请求高峰,分布式系统可以提高系统的容错能力和抗压能力,非常适合秒杀场景。
在这种场景下,请求不可能是一个接一个这种,而是成千上万个请求同时打过来,那么就会出现多个请求在同一时刻查询库存,如下图:
如果在同一时刻查询商品库存表,那么得到的商品库存也肯定是相同的,判断的逻辑也是相同的。
举个例子,现在商品的库存是 10 件,请求 1 买 6 件,请求 2 买 5 件,由于两次请求查询到的库存都是 10,肯定是可以卖的。但是真实情况是 5+6=11>10,明显有问题!这两笔请求必然有一笔失败才是对的!
那么,这种问题怎么解决呢?
解决方案
从上面例子来看,问题好像是由于我们每次拿到的库存都是一样的,才导致库存超卖问题,那是不是只要保证每次拿到的库存都是最新的话,这个问题不就迎刃而解了吗!
在说方案前,先把我的测试表结构贴出来:
CREATE TABLE `t_goods` ( `id` bigint NOT NULL COMMENT '物理主键', `goods_name` varchar(64) DEFAULT NULL COMMENT '商品名称', `goods_pic` varchar(255) DEFAULT NULL COMMENT '商品图片', `goods_desc` varchar(255) DEFAULT NULL COMMENT '商品描述信息', `goods_inventory` int DEFAULT NULL COMMENT '商品库存', `goods_price` decimal(10,2) DEFAULT NULL COMMENT '商品价格', `create_time` datetime DEFAULT NULL COMMENT '创建时间', `update_time` datetime DEFAULT NULL COMMENT '更新时间', PRIMARY KEY (`id`)) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;
复制代码
方法一、redis 分布式锁
Redisson 介绍
官方介绍:Redisson 是一个基于 Redis 的 Java 驻留内存数据网格(In-Memory Data Grid)。它封装了 Redis 客户端 API,并提供了一个分布式锁、分布式集合、分布式对象、分布式 Map 等常用的数据结构和服务。Redisson 支持 Java 6 以上版本和 Redis 2.6 以上版本,并且采用编解码器和序列化器来支持任何对象类型。 Redisson 还提供了一些高级功能,比如异步 API 和响应式流式 API。它可以在分布式系统中被用来实现高可用性、高性能、高可扩展性的数据处理。
Redisson 使用
引入
<!--使用redisson作为分布式锁--><dependency> <groupId>org.redisson</groupId> <artifactId>redisson</artifactId> <version>3.16.8</version></dependency>
复制代码
注入对象
RedissonConfig.java
import org.redisson.Redisson;import org.redisson.api.RedissonClient;import org.redisson.config.Config;import org.springframework.context.annotation.Bean;import org.springframework.context.annotation.Configuration;
@Configurationpublic class RedissonConfig { /** * 所有对Redisson的使用都是通过RedissonClient对象 * * @return */ @Bean(destroyMethod = "shutdown") public RedissonClient redissonClient() { // 创建配置 指定redis地址及节点信息 Config config = new Config(); config.useSingleServer().setAddress("redis://127.0.0.1:6379").setPassword("123456");
// 根据config创建出RedissonClient实例 RedissonClient redissonClient = Redisson.create(config); return redissonClient;
}}
复制代码
代码优化
public String buyRedisLock(Long goodsId, Integer goodsNum) { RLock lock = redissonClient.getLock("goods_buy"); try { //加分布式锁 lock.lock(); //查询商品库存 Goods goods = goodsMapper.selectById(goodsId); //如果当前库存为0,提示商品已经卖光了 if (goods.getGoodsInventory() <= 0) { return "商品已经卖光了!"; } //如果当前购买数量大于库存,提示库存不足 if (goodsNum > goods.getGoodsInventory()) { return "库存不足!"; } //更新库存 goods.setGoodsInventory(goods.getGoodsInventory() - goodsNum); goodsMapper.updateById(goods); return "购买成功!"; } catch (Exception e) { log.error("秒杀失败"); } finally { lock.unlock(); } return "购买失败";}
复制代码
加上 Redisson 分布式锁之后,使得请求由异步变为同步,让购买操作一个一个进行,解决了库存超卖问题,但是会让用户等待的时间加长,影响了用户体验。
方法二、MySQL 的行锁
行锁介绍
MySQL 的行锁是一种针对行级别数据的锁,它可以锁定某个表中的某一行数据,以保证在锁定期间,其他事务无法修改该行数据,从而保证数据的一致性和完整性。特点如下:
总之,行锁可以有效地保证数据的一致性和完整性,但是过多的行锁也会导致性能问题,因此在使用行锁时需要谨慎考虑,避免出现性能瓶颈。
那么回到库存超卖这个问题上来,我们可以在一开始查询商品库存的时候增加一个行锁,实现非常简单,也就是将
//查询商品库存Goods goods = goodsMapper.selectById(goodsId);
原始查询SQLSELECT * FROM t_goods WHERE id = #{goodsId}
改写为 SELECT * FROM t_goods WHERE id = #{goodsId} for update
复制代码
那么被查询到的这行商品库存信息就会被锁住,其他请求想要读取这行数据时就需要等待当前请求结束了,这样就做到了每次查询库存都是最新的。不过同 Redisson 分布式锁一样,会让用户等待的时间加长,影响用户体验。
方法三、乐观锁
乐观锁机制类似 java 中的 cas 机制,在查询数据的时候不加锁,只有更新数据的时候才比对数据是否已经发生过改变,没有改变则执行更新操作,已经改变了则进行重试。
商品表增加 version 字段并初始化数据为 0
`version` int(11) DEFAULT NULL COMMENT '版本'
复制代码
将更新 SQL 修改如下
update t_goodsset goods_inventory = goods_inventory - #{goodsNum}, version = version + 1where id = #{goodsId}and version = #{version}
复制代码
Java 代码修改如下
public String buyVersion(Long goodsId, Integer goodsNum) { //查询商品库存(该语句使用了行锁) Goods goods = goodsMapper.selectById(goodsId); //如果当前库存为0,提示商品已经卖光了 if (goods.getGoodsInventory() <= 0) { return "商品已经卖光了!"; } if (goodsMapper.updateInventoryAndVersion(goodsId, goodsNum, goods.getVersion()) > 0) { return "购买成功!"; } return "库存不足!";}
复制代码
通过增加了版本号的控制,在扣减库存的时候在 where 条件进行版本号的比对。实现查询的是哪一条记录,那么就要求更新的是哪一条记录,在查询到更新的过程中版本号不能变动,否则更新失败。
方法四、where 条件和 unsigned 非负字段限制
前面的 Redisson 分布式锁和行锁都是通过每次都拿到最新的库存从而解决超卖问题,那换一种思路:保证在扣除库存的时候,库存一定大于购买量是不是也可以解决这个问题呢?答案是可以的。回到上面的代码:
//更新库存goods.setGoodsInventory(goods.getGoodsInventory() - goodsNum);goodsMapper.updateById(goods);
复制代码
我们把库存的扣减写在了代码中,这样肯定是不行的,因为在分布式系统中我们获取到的库存可能都是一样的,应该把库存的扣减逻辑放到 SQL 中,即:
update t_goods set goods_inventory = goods_inventory - #{goodsNum} where id = #{goodsId}
复制代码
上面的 SQL 保证了每次获取的库存都是取数据库的库存,不过我们还需要加一个判断:保证库存大于购买量,即:
update t_goodsset goods_inventory = goods_inventory - #{goodsNum}where id = #{goodsId}AND (goods_inventory - #{goodsNum}) >= 0
复制代码
那么上面那段 Java 代码也需修改一下:
public String buySqlUpdate(Long goodsId, Integer goodsNum) { //查询商品库存(该语句使用了行锁) Goods goods = goodsMapper.queryById(goodsId); //如果当前库存为0,提示商品已经卖光了 if (goods.getGoodsInventory() <= 0) { return "商品已经卖光了!"; } //此处需要判断更新操作是否成功 if (goodsMapper.updateInventory(goodsId, goodsNum) > 0) { return "购买成功!"; } return "库存不足!";}
复制代码
还有一种办法和 where 条件一样,就是 unsigned 非负字段限制,把库存字段设置为 unsigned 非负字段类型,那么在扣减时也不会出现扣成负数的情况。
总结一下
方案有很多,用法结合实际业务来看,没有最优,只有更优,甚至可以几种方案组合起来解决问题。
作者:summo
链接:https://juejin.cn/post/7236593511008976956
来源:稀土掘金
评论