写点什么

搜索推荐 DeepFM 算法详解:算法原理、代码实现、比赛实战

  • 2024-01-26
    浙江
  • 本文字数:7662 字

    阅读完需:约 25 分钟

搜索推荐DeepFM算法详解:算法原理、代码实现、比赛实战

搜索推荐 DeepFM 算法详解:算法原理、代码实现、比赛实战

可以说,DeepFM 是目前最受欢迎的 CTR 预估模型之一,不仅是在交流群中被大家提及最多的,同时也是在面试中最多被提及的:


1、Deepfm 的原理,DeepFM 是一个模型还是代表了一类模型,DeepFM 对 FM 做了什么样的改进,FM 的公式如何化简并求解梯度(滴滴) 2、FM、DeepFM 介绍一下(猫眼) 3、DeepFm 模型介绍一下(一点资讯) 4、DeepFM 介绍下 & FM 推导(一点资讯)


这次咱们一起来回顾一下 DeepFM 模型,以及手把手来实现一波!

1、DeepFM 原理回顾

先来回顾一下 DeepFM 的模型结构:



DeepFM 包含两部分:因子分解机部分与神经网络部分,分别负责低阶特征的提取和高阶特征的提取。这两部分共享同样的嵌入层输入。DeepFM 的预测结果可以写为:


1.1 嵌入层


嵌入层 (embedding layer) 的结构如上图所示。通过嵌入层,尽管不同 field 的长度不同(不同离散变量的取值个数可能不同),但是 embedding 之后向量的长度均为 K(我们提前设定好的 embedding-size)。通过代码可以发现,在得到 embedding 之后,我们还将对应的特征值乘到了 embedding 上,这主要是由于 fm 部分和 dnn 部分共享嵌入层作为输入,而 fm 中的二次项如下:


1.2 FM 部分

FM 部分的详细结构如下:



FM 部分是一个因子分解机。关于因子分解机可以参阅文章 [Rendle, 2010] Steffen Rendle. Factorization machines. In ICDM, 2010.。因为引入了隐变量的原因,对于几乎不出现或者很少出现的隐变量,FM 也可以很好的学习。


FM 的输出公式为:


1.3 深度部分


深度部分是一个多层前馈神经网络。我们这里不再赘述。

1.4 与其他神经网络的关系


1.5 模型效果


2、代码实现

2.1 Embedding 介绍

DeepFM 中,很重要的一项就是 embedding 操作,所以我们先来看看什么是 embedding,可以简单的理解为,将一个特征转换为一个向量。在推荐系统当中,我们经常会遇到离散变量,如 userid、itemid。对于离散变量,我们一般的做法是将其转换为 one-hot,但对于 itemid 这种离散变量,转换成 one-hot 之后维度非常高,但里面只有一个是 1,其余都为 0。这种情况下,我们的通常做法就是将其转换为 embedding。


embedding 的过程是什么样子的呢?它其实就是一层全连接的神经网络,如下图所示:



假设一个离散变量共有 5 个取值,也就是说 one-hot 之后会变成 5 维,我们想将其转换为 embedding 表示,其实就是接入了一层全连接神经网络。由于只有一个位置是 1,其余位置是 0,因此得到的 embedding 就是与其相连的图中红线上的权重。

2.2 tf.nn.embedding_lookup 函数介绍

在 tf1.x 中,我们使用 embedding_lookup 函数来实现 embedding,代码如下:


#embeddingembedding = tf.constant(        [[0.21,0.41,0.51,0.11]],        [0.22,0.42,0.52,0.12],        [0.23,0.43,0.53,0.13],        [0.24,0.44,0.54,0.14]],dtype=tf.float32)
feature_batch = tf.constant([2,3,1,0])
get_embedding1 = tf.nn.embedding_lookup(embedding,feature_batch)
复制代码


在 embedding_lookup 中,第一个参数相当于一个二维的词表,并根据第二个参数中指定的索引,去词表中寻找并返回对应的行。上面的过程为:



注意这里的维度的变化,假设我们的 feature_batch 是 1 维的 tensor,长度为 4,而 embedding 的长度为 4,那么得到的结果是 4 * 4 的,同理,假设 feature_batch 是 2 *4 的,embedding_lookup 后的结果是 2 * 4 * 4。每一个索引返回 embedding table 中的一行,自然维度会 + 1。


上文说过,embedding 层其实是一个全连接神经网络层,那么其过程等价于:



可以得到下面的代码:


embedding = tf.constant(    [        [0.21,0.41,0.51,0.11],        [0.22,0.42,0.52,0.12],        [0.23,0.43,0.53,0.13],        [0.24,0.44,0.54,0.14]    ],dtype=tf.float32)
feature_batch = tf.constant([2,3,1,0])feature_batch_one_hot = tf.one_hot(feature_batch,depth=4)get_embedding2 = tf.matmul(feature_batch_one_hot,embedding)
复制代码


二者是否一致呢?我们通过代码来验证一下:


with tf.Session() as sess:    sess.run(tf.global_variables_initializer())    embedding1,embedding2 = sess.run([get_embedding1,get_embedding2])    print(embedding1)    print(embedding2)
复制代码


得到的结果为:



二者得到的结果是一致的。


因此,使用 embedding_lookup 的话,我们不需要将数据转换为 one-hot 形式,只需要传入对应的 feature 的 index 即可。

2.3 数据处理

接下来进入代码实战部分。


首先我们来看看数据处理部分,通过刚才的讲解,想要给每一个特征对应一个 k 维的 embedding,如果我们使用 embedding_lookup 的话,需要得到连续变量或者离散变量对应的特征索引 feature index。听起来好像有点抽象,咱们还是举个简单的例子:



这里有三组特征,或者说 3 个 field 的特征,分别是性别、星期几、职业。对应的特征数量分别为 2、7、2。我们总的特征数量 feature-size 为 2 + 7 + 2=11。如果转换为 one-hot 的话,每一个取值都会对应一个特征索引 feature-index。


这样,对于一个实例男/二/学生来说,将其转换为对应的特征索引即为 0、3、9。在得到特征索引之后,就可以通过 embedding_lookup 来获取对应特征的 embedding。


当然,上面的例子中我们只展示了三个离散变量,对于连续变量,我们也会给它一个对应的特征索引,如:



可以看到,此时共有 5 个 field,一个连续特征就对应一个 field。


但是在 FM 的公式中,不光是 embedding 的内积,特征取值也同样需要。对于离散变量来说,特征取值就是 1,对于连续变量来说,特征取值是其本身,因此,我们想要得到的数据格式如下:



定好了目标之后,咱们就开始实现代码。先看下对应的数据集:


import pandas as pd
TRAIN_FILE = "data/train.csv"TEST_FILE = "data/test.csv"
NUMERIC_COLS = [ "ps_reg_01", "ps_reg_02", "ps_reg_03", "ps_car_12", "ps_car_13", "ps_car_14", "ps_car_15"]
IGNORE_COLS = [ "id", "target", "ps_calc_01", "ps_calc_02", "ps_calc_03", "ps_calc_04", "ps_calc_05", "ps_calc_06", "ps_calc_07", "ps_calc_08", "ps_calc_09", "ps_calc_10", "ps_calc_11", "ps_calc_12", "ps_calc_13", "ps_calc_14", "ps_calc_15_bin", "ps_calc_16_bin", "ps_calc_17_bin", "ps_calc_18_bin", "ps_calc_19_bin", "ps_calc_20_bin"]
dfTrain = pd.read_csv(TRAIN_FILE)dfTest = pd.read_csv(TEST_FILE)print(dfTrain.head(10))
复制代码


数据集如下:



我们定义了一些不考虑的变量列、一些连续变量列,剩下的就是离散变量列,接下来,想要得到一个 feature-map。这个 featrue-map 定义了如何将变量的不同取值转换为其对应的特征索引 feature-index。


df = pd.concat([dfTrain,dfTest])
feature_dict = {}total_feature = 0for col in df.columns: if col in IGNORE_COLS: continue elif col in NUMERIC_COLS: feature_dict[col] = total_feature total_feature += 1 else: unique_val = df[col].unique() feature_dict[col] = dict(zip(unique_val,range(total_feature,len(unique_val) + total_feature))) total_feature += len(unique_val)print(total_feature)print(feature_dict)
复制代码


这里,我们定义了 total_feature 来得到总的特征数量,定义了 feature_dict 来得到变量取值到特征索引的对应关系,结果如下:



可以看到,对于连续变量,直接是变量名到索引的映射,对于离散变量,内部会嵌套一个二级 map,这个二级 map 定义了该离散变量的不同取值到索引的映射。


下一步,需要将训练集和测试集转换为两个新的数组,分别是 feature-index,将每一条数据转换为对应的特征索引,以及 feature-value,将每一条数据转换为对应的特征值。


"""对训练集进行转化"""print(dfTrain.columns)train_y = dfTrain[['target']].values.tolist()dfTrain.drop(['target','id'],axis=1,inplace=True)train_feature_index = dfTrain.copy()train_feature_value = dfTrain.copy()
for col in train_feature_index.columns: if col in IGNORE_COLS: train_feature_index.drop(col,axis=1,inplace=True) train_feature_value.drop(col,axis=1,inplace=True) continue elif col in NUMERIC_COLS: train_feature_index[col] = feature_dict[col] else: train_feature_index[col] = train_feature_index[col].map(feature_dict[col]) train_feature_value[col] = 1

"""对测试集进行转化"""test_ids = dfTest['id'].values.tolist()dfTest.drop(['id'],axis=1,inplace=True)
test_feature_index = dfTest.copy()test_feature_value = dfTest.copy()
for col in test_feature_index.columns: if col in IGNORE_COLS: test_feature_index.drop(col,axis=1,inplace=True) test_feature_value.drop(col,axis=1,inplace=True) continue elif col in NUMERIC_COLS: test_feature_index[col] = feature_dict[col] else: test_feature_index[col] = test_feature_index[col].map(feature_dict[col]) test_feature_value[col] = 1
复制代码


来看看此时的训练集的特征索引:



对应的特征值:



此时,我们的训练集和测试集就处理完毕了!

2.4 模型参数及输入

接下来定义模型的一些参数,如学习率、embedding 的大小、深度网络的参数、激活函数等等,还有两个比较重要的参数,分别是 feature 的大小和 field 的大小:


"""模型参数"""dfm_params = {    "use_fm":True,    "use_deep":True,    "embedding_size":8,    "dropout_fm":[1.0,1.0],    "deep_layers":[32,32],    "dropout_deep":[0.5,0.5,0.5],    "deep_layer_activation":tf.nn.relu,    "epoch":30,    "batch_size":1024,    "learning_rate":0.001,    "optimizer":"adam",    "batch_norm":1,    "batch_norm_decay":0.995,    "l2_reg":0.01,    "verbose":True,    "eval_metric":'gini_norm',    "random_seed":3}dfm_params['feature_size'] = total_featuredfm_params['field_size'] = len(train_feature_index.columns)
复制代码


而训练模型的输入有三个,分别是刚才转换得到的特征索引和特征值,以及 label:


"""开始建立模型"""feat_index = tf.placeholder(tf.int32,shape=[None,None],name='feat_index')feat_value = tf.placeholder(tf.float32,shape=[None,None],name='feat_value')
label = tf.placeholder(tf.float32,shape=[None,1],name='label')
复制代码


比如刚才的两个数据,对应的输入为:



定义好输入之后,再定义一下模型中所需要的 weights:


"""建立weights"""weights = dict()
#embeddingsweights['feature_embeddings'] = tf.Variable( tf.random_normal([dfm_params['feature_size'],dfm_params['embedding_size']],0.0,0.01), name='feature_embeddings')weights['feature_bias'] = tf.Variable(tf.random_normal([dfm_params['feature_size'],1],0.0,1.0),name='feature_bias')

#deep layersnum_layer = len(dfm_params['deep_layers'])input_size = dfm_params['field_size'] * dfm_params['embedding_size']glorot = np.sqrt(2.0/(input_size + dfm_params['deep_layers'][0]))
weights['layer_0'] = tf.Variable( np.random.normal(loc=0,scale=glorot,size=(input_size,dfm_params['deep_layers'][0])),dtype=np.float32)weights['bias_0'] = tf.Variable( np.random.normal(loc=0,scale=glorot,size=(1,dfm_params['deep_layers'][0])),dtype=np.float32)

for i in range(1,num_layer): glorot = np.sqrt(2.0 / (dfm_params['deep_layers'][i - 1] + dfm_params['deep_layers'][I])) weights["layer_%d" % i] = tf.Variable( np.random.normal(loc=0, scale=glorot, size=(dfm_params['deep_layers'][i - 1], dfm_params['deep_layers'][i])), dtype=np.float32) # layers[i-1] * layers[I] weights["bias_%d" % i] = tf.Variable( np.random.normal(loc=0, scale=glorot, size=(1, dfm_params['deep_layers'][i])), dtype=np.float32) # 1 * layer[I]

#final concat projection layer
if dfm_params['use_fm'] and dfm_params['use_deep']: input_size = dfm_params['field_size'] + dfm_params['embedding_size'] + dfm_params['deep_layers'][-1]elif dfm_params['use_fm']: input_size = dfm_params['field_size'] + dfm_params['embedding_size']elif dfm_params['use_deep']: input_size = dfm_params['deep_layers'][-1]
glorot = np.sqrt(2.0/(input_size + 1))weights['concat_projection'] = tf.Variable(np.random.normal(loc=0,scale=glorot,size=(input_size,1)),dtype=np.float32)weights['concat_bias'] = tf.Variable(tf.constant(0.01),dtype=np.float32)
复制代码


介绍两个比较重要的参数,weights['feature_embeddings'] 是每个特征所对应的 embedding,它的大小为 feature-size * embedding-size,另一个参数是 weights['feature_bias'] ,这个是 FM 部分计算时所用到的一次项的权重参数,可以理解为 embedding-size 为 1 的 embedding table,它的大小为 feature-size * 1。


假设 weights['feature_embeddings'] 如下:


2.5 嵌入层

嵌入层,主要根据特征索引得到对应特征的 embedding:


"""embedding"""embeddings = tf.nn.embedding_lookup(weights['feature_embeddings'],feat_index)
reshaped_feat_value = tf.reshape(feat_value,shape=[-1,dfm_params['field_size'],1])
embeddings = tf.multiply(embeddings,reshaped_feat_value)
复制代码


这里注意的是,在得到对应的 embedding 之后,还乘上了对应的特征值,这个主要是根据 FM 的公式得到的。过程表示如下:


2.6 FM 部分

我们先来回顾一下 FM 的公式,以及二次项的化简过程:




上面的式子中有部分同学曾经问我第一步是怎么推导的,其实也不难,看下面的手写过程



因此,一次项的计算如下,我们刚刚也说过了,通过 weights['feature_bias'] 来得到一次项的权重系数:


fm_first_order = tf.nn.embedding_lookup(weights['feature_embeddings'],feat_index)fm_first_order = tf.reduce_sum(tf.multiply(fm_first_order,reshaped_feat_value),2)
复制代码


对于二次项,经过化简之后有两部分(暂不考虑最外层的求和),我们先用 excel 来形象展示一下两部分,这有助于你对下面代码的理解。


第一部分过程如下:



第二部分的过程如下:



最后两部分相减:



二次项部分的代码如下:


summed_features_emb = tf.reduce_sum(embeddings,1)summed_features_emb_square = tf.square(summed_features_emb)
squared_features_emb = tf.square(embeddings)squared_sum_features_emb = tf.reduce_sum(squared_features_emb,1)
fm_second_order = 0.5 * tf.subtract(summed_features_emb_square,squared_sum_features_emb)
复制代码


要注意这里的 fm_second_order 是二维的 tensor,大小为 batch-size * embedding-size,也就是公式中最外层的一个求和还没有进行,这也是代码中与 FM 公式有所出入的地方。我们后面再讲。

2.7 Deep 部分

Deep 部分很简单了,就是几层全连接的神经网络:


"""deep part"""y_deep = tf.reshape(embeddings,shape=[-1,dfm_params['field_size'] * dfm_params['embedding_size']])
for i in range(0,len(dfm_params['deep_layers'])): y_deep = tf.add(tf.matmul(y_deep,weights["layer_%d" %i]), weights["bias_%d"%I]) y_deep = tf.nn.relu(y_deep)
复制代码

2.8 输出部分

最后的输出部分,论文中的公式如下:



在我们的代码中如下:


"""final layer"""if dfm_params['use_fm'] and dfm_params['use_deep']:    concat_input = tf.concat([fm_first_order,fm_second_order,y_deep],axis=1)elif dfm_params['use_fm']:    concat_input = tf.concat([fm_first_order,fm_second_order],axis=1)elif dfm_params['use_deep']:    concat_input = y_deep    out = tf.nn.sigmoid(tf.add(tf.matmul(concat_input,weights['concat_projection']),weights['concat_bias']))
复制代码


看似有点出入,其实真的有点出入,不过无碍,咱们做两点说明:


1)首先,这里整体上和最终的公式是相似的,看下面的 excel(由于最后一层只有一个神经元,矩阵相乘可以用对位相乘再求和代替):



2)这里不同的地方就是,FM 二次项化简之后最外层不再是简单的相加了,而是变成了加权求和(有点类似 attention 的意思),如果 FM 二次项部分对应的权重都是 1,就是标准的 FM 了。

2.9 Loss and Optimizer

这一块也不再多讲,我们使用 logloss 来指导模型的训练:


"""loss and optimizer"""loss = tf.losses.log_loss(tf.reshape(label,(-1,1)), out)optimizer = tf.train.AdamOptimizer(learning_rate=dfm_params['learning_rate'], beta1=0.9, beta2=0.999,                                                        epsilon=1e-8).minimize(loss)
复制代码


至此,我们整个 DeepFM 模型的架构就搭起来了,接下来,我们简单测试一下代码:


"""train"""with tf.Session() as sess:    sess.run(tf.global_variables_initializer())    for i in range(100):        epoch_loss,_ = sess.run([loss,optimizer],feed_dict={feat_index:train_feature_index,                             feat_value:train_feature_value,                             label:train_y})        print("epoch %s,loss is %s" % (str(i),str(epoch_loss)))
复制代码

3.实战案例参考

搜索推荐算法挑战赛 OGeek-完整方案及代码(亚军):https://cloud.tencent.com/developer/article/1479464


更多优质内容请关注公号:汀丶人工智能;会提供一些相关的资源和优质文章,免费获取阅读。


  • 参考链接


https://arxiv.org/pdf/1703.04247v1.pdf


http://www.360doc.com/content/21/0720/21/99071_987495812.shtml


https://blog.csdn.net/hero_myself/article/details/117522304


https://cloud.tencent.com/developer/article/1479464

发布于: 刚刚阅读数: 5
用户头像

本博客将不定期更新关于NLP等领域相关知识 2022-01-06 加入

本博客将不定期更新关于机器学习、强化学习、数据挖掘以及NLP等领域相关知识,以及分享自己学习到的知识技能,感谢大家关注!

评论

发布
暂无评论
搜索推荐DeepFM算法详解:算法原理、代码实现、比赛实战_自然语言处理_汀丶人工智能_InfoQ写作社区