写点什么

Apache Doris + Paimon 快速搭建指南|Lakehouse 使用手册(二)

作者:SelectDB
  • 2024-07-25
    北京
  • 本文字数:7868 字

    阅读完需:约 26 分钟

Apache Doris + Paimon 快速搭建指南|Lakehouse 使用手册(二)

湖仓一体(Data Lakehouse)融合了数据仓库的高性能、实时性以及数据湖的低成本、灵活性等优势,帮助用户更加便捷地满足各种数据处理分析的需求。在过去多个版本中,Apache Doris 持续加深与数据湖的融合,已演进出一套成熟的湖仓一体解决方案。


为便于用户快速入门,我们将通过系列文章介绍 Apache Doris 与各类主流数据湖格式及存储系统的湖仓一体架构搭建指南,包括 Hudi、Iceberg、Paimon、OSS、Delta Lake、Kudu、BigQuery 等。目前,我们已经发布了 Apache Doris + Apache Hudi 快速搭建指南|Lakehouse 使用手册(一),通过此文你可了解到在 Docker 环境下,如何快速搭建 Apache Doris + Apache Hudi 的测试及演示环境。


本文我们将再续前言,为大家介绍 Lakehouse 使用手册(二)之 Apache Doris + Apache Paimon 搭建指南。

Apache Doris + Apache Paimon

Apache Paimon 是一种数据湖格式,并创新性地将数据湖格式和 LSM 结构的优势相结合,成功将高效的实时流更新能力引入数据湖架构中,这使得 Paimon 能够实现数据的高效管理和实时分析,为构建实时湖仓架构提供了强大的支撑。


为了充分发挥 Paimon 的能力,提高对 Paimon 数据的查询效率,Apache Doris 对 Paimon 的多项最新特性提供了原生支持:


  • 支持 Hive Metastore、FileSystem 等多种类型的 Paimon Catalog。

  • 原生支持 Paimon 0.6 版本发布的 Primary Key Table Read Optimized 功能。

  • 原生支持 Paimon 0.8 版本发布的 Primary Key Table Deletion Vector 功能。


基于 Apache Doris 的高性能查询引擎和 Apache Paimon 高效的实时流更新能力,用户可以实现:


  • 数据实时入湖: 借助 Paimon 的 LSM-Tree 模型,数据入湖的时效性可以降低到分钟级;同时,Paimon 支持包括聚合、去重、部分列更新在内的多种数据更新能力,使得数据流动更加灵活高效。

  • 高性能数据处理分析: Paimon 所提供的 Append Only Table、Read Optimized、Deletion Vector 等技术,可与 Doris 强大的查询引擎对接,实现湖上数据的快速查询及分析响应。


未来 Apache Doris 将会逐步支持包括 Time Travel、增量数据读取在内的 Apache Paimon 更多高级特性,共同构建统一、高性能、实时的湖仓平台。


本文将会再 Docker 环境中,为读者讲解如何快速搭建 Apache Doris + Apache Paimon 测试 & 演示环境,并展示各功能的使用操作。

使用指南

本文涉及脚本 &代码从该地址获取:https://github.com/apache/doris/tree/master/samples/datalake/iceberg_and_paimon

01 环境准备

本文示例采用 Docker Compose 部署,组件及版本号如下:



Apache Doris 2.1.5 为全新发布:| 下载地址Release Notes

02 环境部署

1. 启动所有组件


bash ./start_all.sh
复制代码


2. 启动后,可以使用如下脚本,登陆 Flink 命令行或 Doris 命令行:


bash ./start_flink_client.shbash ./start_doris_client.sh
复制代码

03 数据准备

首先登陆 Flink 命令行后,可以看到一张预构建的表。表中已经包含一些数据,我们可以通过 Flink SQL 进行查看。


Flink SQL> use paimon.db_paimon;[INFO] Execute statement succeed.
Flink SQL> show tables;+------------+| table name |+------------+| customer |+------------+1 row in set
Flink SQL> show create table customer;+------------------------------------------------------------------------+| result |+------------------------------------------------------------------------+| CREATE TABLE `paimon`.`db_paimon`.`customer` ( `c_custkey` INT NOT NULL, `c_name` VARCHAR(25), `c_address` VARCHAR(40), `c_nationkey` INT NOT NULL, `c_phone` CHAR(15), `c_acctbal` DECIMAL(12, 2), `c_mktsegment` CHAR(10), `c_comment` VARCHAR(117), CONSTRAINT `PK_c_custkey_c_nationkey` PRIMARY KEY (`c_custkey`, `c_nationkey`) NOT ENFORCED) PARTITIONED BY (`c_nationkey`)WITH ( 'bucket' = '1', 'path' = 's3://warehouse/wh/db_paimon.db/customer', 'deletion-vectors.enabled' = 'true') |+-------------------------------------------------------------------------+1 row in set
Flink SQL> desc customer;+--------------+----------------+-------+-----------------------------+--------+-----------+| name | type | null | key | extras | watermark |+--------------+----------------+-------+-----------------------------+--------+-----------+| c_custkey | INT | FALSE | PRI(c_custkey, c_nationkey) | | || c_name | VARCHAR(25) | TRUE | | | || c_address | VARCHAR(40) | TRUE | | | || c_nationkey | INT | FALSE | PRI(c_custkey, c_nationkey) | | || c_phone | CHAR(15) | TRUE | | | || c_acctbal | DECIMAL(12, 2) | TRUE | | | || c_mktsegment | CHAR(10) | TRUE | | | || c_comment | VARCHAR(117) | TRUE | | | |+--------------+----------------+-------+-----------------------------+--------+-----------+8 rows in set
Flink SQL> select * from customer order by c_custkey limit 4;+-----------+--------------------+--------------------------------+-------------+-----------------+-----------+--------------+--------------------------------+| c_custkey | c_name | c_address | c_nationkey | c_phone | c_acctbal | c_mktsegment | c_comment |+-----------+--------------------+--------------------------------+-------------+-----------------+-----------+--------------+--------------------------------+| 1 | Customer#000000001 | IVhzIApeRb ot,c,E | 15 | 25-989-741-2988 | 711.56 | BUILDING | to the even, regular platel... || 2 | Customer#000000002 | XSTf4,NCwDVaWNe6tEgvwfmRchLXak | 13 | 23-768-687-3665 | 121.65 | AUTOMOBILE | l accounts. blithely ironic... || 3 | Customer#000000003 | MG9kdTD2WBHm | 1 | 11-719-748-3364 | 7498.12 | AUTOMOBILE | deposits eat slyly ironic,... || 32 | Customer#000000032 | jD2xZzi UmId,DCtNBLXKj9q0Tl... | 15 | 25-430-914-2194 | 3471.53 | BUILDING | cial ideas. final, furious ... |+-----------+--------------------+--------------------------------+-------------+-----------------+-----------+--------------+--------------------------------+4 rows in set
复制代码

04 数据查询

如下所示,Doris 集群中已经创建了名为paimon 的 Catalog(可通过 SHOW CATALOGS 查看)。以下为该 Catalog 的创建语句:


-- 已创建,无需执行CREATE CATALOG `paimon` PROPERTIES (    "type" = "paimon",    "warehouse" = "s3://warehouse/wh/",    "s3.endpoint"="http://minio:9000",    "s3.access_key"="admin",    "s3.secret_key"="password",    "s3.region"="us-east-1");
复制代码


你可登录到 Doris 中查询 Paimon 的数据:


mysql> use paimon.db_paimon;Reading table information for completion of table and column namesYou can turn off this feature to get a quicker startup with -A
Database changedmysql> show tables;+---------------------+| Tables_in_db_paimon |+---------------------+| customer |+---------------------+1 row in set (0.00 sec)
mysql> select * from customer order by c_custkey limit 4;+-----------+--------------------+---------------------------------------+-------------+-----------------+-----------+--------------+--------------------------------------------------------------------------------------------------------+| c_custkey | c_name | c_address | c_nationkey | c_phone | c_acctbal | c_mktsegment | c_comment |+-----------+--------------------+---------------------------------------+-------------+-----------------+-----------+--------------+--------------------------------------------------------------------------------------------------------+| 1 | Customer#000000001 | IVhzIApeRb ot,c,E | 15 | 25-989-741-2988 | 711.56 | BUILDING | to the even, regular platelets. regular, ironic epitaphs nag e || 2 | Customer#000000002 | XSTf4,NCwDVaWNe6tEgvwfmRchLXak | 13 | 23-768-687-3665 | 121.65 | AUTOMOBILE | l accounts. blithely ironic theodolites integrate boldly: caref || 3 | Customer#000000003 | MG9kdTD2WBHm | 1 | 11-719-748-3364 | 7498.12 | AUTOMOBILE | deposits eat slyly ironic, even instructions. express foxes detect slyly. blithely even accounts abov || 32 | Customer#000000032 | jD2xZzi UmId,DCtNBLXKj9q0Tlp2iQ6ZcO3J | 15 | 25-430-914-2194 | 3471.53 | BUILDING | cial ideas. final, furious requests across the e |+-----------+--------------------+---------------------------------------+-------------+-----------------+-----------+--------------+--------------------------------------------------------------------------------------------------------+4 rows in set (1.89 sec)
复制代码

05 读取增量数据

我们可以通过 Flink SQL 更新 Paimon 表中的数据:


Flink SQL> update customer set c_address='c_address_update' where c_nationkey = 1;[INFO] Submitting SQL update statement to the cluster...[INFO] SQL update statement has been successfully submitted to the cluster:Job ID: ff838b7b778a94396b332b0d93c8f7ac
复制代码


等 Flink SQL 执行完毕后,在 Doris 中可直接查看到最新的数据:


mysql> select * from customer where c_nationkey=1 limit 2;+-----------+--------------------+-----------------+-------------+-----------------+-----------+--------------+--------------------------------------------------------------------------------------------------------+| c_custkey | c_name             | c_address       | c_nationkey | c_phone         | c_acctbal | c_mktsegment | c_comment                                                                                              |+-----------+--------------------+-----------------+-------------+-----------------+-----------+--------------+--------------------------------------------------------------------------------------------------------+|         3 | Customer#000000003 | c_address_update |           1 | 11-719-748-3364 |   7498.12 | AUTOMOBILE   |  deposits eat slyly ironic, even instructions. express foxes detect slyly. blithely even accounts abov ||       513 | Customer#000000513 | c_address_update |           1 | 11-861-303-6887 |    955.37 | HOUSEHOLD    | press along the quickly regular instructions. regular requests against the carefully ironic s          |+-----------+--------------------+-----------------+-------------+-----------------+-----------+--------------+--------------------------------------------------------------------------------------------------------+2 rows in set (0.19 sec)
复制代码

Benchmark

我们在 Paimon(0.8)版本的 TPCDS 1000 数据集上进行了简单的测试,分别使用了 Apache Doris 2.1.5 版本和 Trino 422 版本,均开启 Primary Key Table Read Optimized 功能。



从测试结果可以看到,Doris 在标准静态测试集上的平均查询性能是 Trino 的 3 -5 倍,后续我们将针对 Deletion Vector 进行优化,进一步提升真实业务场景下的查询效率。

查询优化

对于基线数据来说,Apache Paimon 在 0.6 版本中引入 Primary Key Table Read Optimized 功能后,使得查询引擎可以直接访问底层的 Parquet/ORC 文件,大幅提升了基线数据的读取效率。对于尚未合并的增量数据( INSERT、UPDATE 或 DELETE 所产生的数据增量)来说,可以通过 Merge-on-Read 的方式进行读取。此外,Paimon 在 0.8 版本中还引入的 Deletion Vector 功能,能够进一步提升查询引擎对增量数据的读取效率。


Apache Doris 支持通过原生的 Reader 读取 Deletion Vector 并进行 Merge on Read,我们通过 Doris 的 EXPLAIN 语句,来演示在一个查询中,基线数据和增量数据的查询方式。


mysql> explain verbose select * from customer where c_nationkey < 3;+------------------------------------------------------------------------------------------------------------------------------------------------+| Explain String(Nereids Planner)                                                                                                                |+------------------------------------------------------------------------------------------------------------------------------------------------+| ...............                                                                                                                                ||                                                                                                                                                ||   0:VPAIMON_SCAN_NODE(68)                                                                                                                      ||      table: customer                                                                                                                           ||      predicates: (c_nationkey[#3] < 3)                                                                                                         ||      inputSplitNum=4, totalFileSize=238324, scanRanges=4                                                                                       ||      partition=3/0                                                                                                                             ||      backends:                                                                                                                                 ||        10002                                                                                                                                   ||          s3://warehouse/wh/db_paimon.db/customer/c_nationkey=1/bucket-0/data-15cee5b7-1bd7-42ca-9314-56d92c62c03b-0.orc start: 0 length: 66600 ||          s3://warehouse/wh/db_paimon.db/customer/c_nationkey=1/bucket-0/data-5d50255a-2215-4010-b976-d5dc656f3444-0.orc start: 0 length: 44501 ||          s3://warehouse/wh/db_paimon.db/customer/c_nationkey=2/bucket-0/data-e98fb7ef-ec2b-4ad5-a496-713cb9481d56-0.orc start: 0 length: 64059 ||          s3://warehouse/wh/db_paimon.db/customer/c_nationkey=0/bucket-0/data-431be05d-50fa-401f-9680-d646757d0f95-0.orc start: 0 length: 63164 ||      cardinality=18751, numNodes=1                                                                                                             ||      pushdown agg=NONE                                                                                                                         ||      paimonNativeReadSplits=4/4                                                                                                                ||      PaimonSplitStats:                                                                                                                         ||        SplitStat [type=NATIVE, rowCount=1542, rawFileConvertable=true, hasDeletionVector=true]                                                 ||        SplitStat [type=NATIVE, rowCount=750, rawFileConvertable=true, hasDeletionVector=false]                                                 ||        SplitStat [type=NATIVE, rowCount=750, rawFileConvertable=true, hasDeletionVector=false]                                                 ||      tuple ids: 0| ...............                                                                                                           |                                                                                                  |+------------------------------------------------------------------------------------------------------------------------------------------------+67 rows in set (0.23 sec)
复制代码


可以看到,对于刚才通过 Flink SQL 更新的表,包含 4 个分片,并且全部分片都可以通过 Native Reader 进行访问(paimonNativeReadSplits=4/4)。并且第一个分片的hasDeletionVector的属性为 true,表示该分片有对应的 Deletion Vector,读取时会根据 Deletion Vector 进行数据过滤。

结束语

以上是基于 Apache Doris 与 Apache Paimon 快速搭建测试 / 演示环境的详细指南,后续我们还将陆续推出 Apache Doris 与各类主流数据湖格式及存储系统构建湖仓一体架构的系列指南,包括 Iceberg、OSS、Delta Lake 等,欢迎持续关注。

发布于: 刚刚阅读数: 4
用户头像

SelectDB

关注

极速易用 开源开放 2022-04-20 加入

SelectDB 是基于 Apache Doris 构建的现代化数据仓库,支持大规模实时数据上的极速查询分析。

评论

发布
暂无评论
Apache Doris + Paimon 快速搭建指南|Lakehouse 使用手册(二)_数据湖_SelectDB_InfoQ写作社区