# 加载数据print("===== begin Download Dadasat=====\n")dataset = Planetoid(root='/home/pengyongrong/workspace/data', name='PubMed')print("===== Download Dadasat finished=====\n")print("dataset num_features is: ", dataset.num_features)print("dataset.num_classes is: ", dataset.num_classes) print("dataset.edge_index is: ", dataset.edge_index) print("train data is: ", dataset.data)print("dataset0 is: ", dataset[0]) print("train data mask is: ", dataset.train_mask, "num train is: ", (dataset.train_mask ==True).sum().item())print("val data mask is: ",dataset.val_mask, "num val is: ", (dataset.val_mask ==True).sum().item())print("test data mask is: ",dataset.test_mask, "num test is: ", (dataset.test_mask ==True).sum().item())
复制代码
===== begin Download Dadasat===== ===== Download Dadasat finished===== dataset num_features is: 500dataset.num_classes is: 3dataset.edge_index is: tensor([[ 1378, 1544, 6092, ..., 12278, 4284, 16030], [ 0, 0, 0, ..., 19714, 19715, 19716]])train data is: Data(x=[19717, 500], edge_index=[2, 88648], y=[19717], train_mask=[19717], val_mask=[19717], test_mask=[19717])dataset0 is: Data(x=[19717, 500], edge_index=[2, 88648], y=[19717], train_mask=[19717], val_mask=[19717], test_mask=[19717])train data mask is: tensor([ True, True, True, ..., False, False, False]) num train is: 60val data mask is: tensor([False, False, False, ..., False, False, False]) num val is: 500test data mask is: tensor([False, False, False, ..., True, True, True]) num test is: 1000
model.train()for epoch in range(200): optimizer.zero_grad() out = model(data) loss = F.nll_loss(out[data.train_mask], data.y[data.train_mask]) loss.backward() optimizer.step() # 模型验证过程,对训练得到的模型效果进行评估,并打印准确率。model.eval()_, pred = model(data).max(dim=1)correct = int(pred[data.test_mask].eq(data.y[data.test_mask]).sum().item())acc = correct / int(data.test_mask.sum())print('GAT Accuracy: {:.4f}'.format(acc))
复制代码
[W VariableFallbackKernel.cpp:51] Warning: CAUTION: The operator 'aten::scatter_reduce.two_out' is not currently supported on the NPU backend and will fall back to run on the CPU. This may have performance implications. (function npu_cpu_fallback) GAT Accuracy: 0.3660
评论