六、用 go 语言,说明如何来维护一个支持操作 MIN-GAP 的一些数的动态集 Q,使得该操作能给出 Q 中两个最接近的数之间的差值。例如,Q=(1,5,9,15,18,22),则 MIN-GAP 返回 18-15=3,因为 15 和 18 是 Q 中两个最接近的数。要使得操作 INSERT、DELETE、SEARCH 和 MIN-GAP 尽可能高效,并分析它们的运行时间。
文心一言,代码不能运行:
为了维护一个支持 MIN-GAP 操作的动态集 Q,我们可以使用一个最小堆(Min Heap)来高效地处理插入、删除和查找操作。最小堆能够保证在插入、删除和查找操作中具有对数时间复杂度。
下面是一个使用 Go 语言实现的示例代码:
package main
import (
"container/heap"
"fmt"
)
type MinHeap []int
func (h MinHeap) Len() int { return len(h) }
func (h MinHeap) Less(i, j int) bool { return h[i] < h[j] }
func (h MinHeap) Swap(i, j int) { h[i], h[j] = h[j], h[i] }
func (h *MinHeap) Push(x interface{}) {
*h = append(*h, x.(int))
}
func (h *MinHeap) Pop() interface{} {
old := *h
n := len(old)
x := old[n-1]
*h = old[0 : n-1]
return x
}
type DynamicSet struct {
h MinHeap // 最小堆
min int // 当前最小值
gaps []int // 记录差值集合,用于MIN-GAP操作
index int // gaps的索引,用于记录最新差值的位置
}
func Constructor() DynamicSet {
return DynamicSet{
h: MinHeap{},
min: 0,
gaps: []int{},
index: 0,
}
}
func (ds *DynamicSet) Insert(num int) {
ds.h = append(ds.h, num) // 插入到堆中
heap.Fix(&ds.h, ds.h.Len()-1) // 调整堆结构,使新插入的数成为最小值
ds.min = ds.h[0] // 更新最小值
if ds.index < len(ds.gaps) && num-ds.min == ds.gaps[ds.index] {
ds.index++ // 如果差值已存在,则增加索引位置,以便下次查找下一个差值
} else {
ds.gaps = append(ds.gaps, num-ds.min) // 否则,将新的差值添加到差值集合中
}
}
func (ds *DynamicSet) Delete(num int) {
for i := 0; i < len(ds.h); i++ {
if ds.h[i] == num { // 找到要删除的数在堆中的位置
heap.Remove(&ds.h, i) // 从堆中删除该数,并调整堆结构
if num == ds.min { // 如果删除的数是当前最小值,则更新最小值和差值集合中的最小差值索引位置
ds.min = ds.h[0] // 更新最小值和索引位置为下一个差值的位置(如果存在)或初始位置(如果不存在)
if ds.index > 0 { // 如果存在之前计算出的差值,则更新索引位置为下一个差值的位置(如果存在)或初始位置(如果不存在)
ds.index-- } } return } } } // 如果要删除的数不在堆中,则不执行任何操作(因为我们只处理堆中的数)
}
func (ds *DynamicSet) Search(num int) bool { // 在堆中查找是否存在指定的数,并返回查找结果(true或false)
for i := 0; i < len(ds.h); i++ {
if ds.h[i] == num { // 如果在堆中找到指定的数,则返回true表示存在该数,并结束查找过程。否则继续查找。
return true } } return false // 如果在堆中未找到指定的数,则返回false表示不存在该数,并结束查找过程。
复制代码
讯飞星火,代码正常运行:
为了维护一个支持操作 MIN-GAP 的动态集 Q,我们可以使用平衡二叉搜索树(例如 AVL 树或红黑树)来存储集合中的数。在这种数据结构中,每个节点都包含一个键值和两个子节点的指针。树的左子树中的所有键值都小于根节点的键值,而右子树中的所有键值都大于根节点的键值。这种性质使得我们可以在 O(log n)时间内找到 Q 中的最小值和最大值,从而计算出两个最接近的数之间的差值。
以下是使用 Go 语言实现的一个简单示例:
package main
import (
"fmt"
"math"
)
type Node struct {
value int
left *Node
right *Node
}
func NewNode(value int) *Node {
return &Node{value: value}
}
func insert(root *Node, value int) *Node {
if root == nil {
return NewNode(value)
}
if value < root.value {
root.left = insert(root.left, value)
} else {
root.right = insert(root.right, value)
}
return root
}
func minValue(root *Node) int {
current := root
for current.left != nil {
current = current.left
}
return current.value
}
func maxValue(root *Node) int {
current := root
for current.right != nil {
current = current.right
}
return current.value
}
func minGap(root *Node) int {
if root == nil {
return math.MaxInt32
}
min := minValue(root)
max := maxValue(root)
return max - min
}
func main() {
values := []int{1, 5, 9, 15, 18, 22}
var root *Node
for _, value := range values {
root = insert(root, value)
}
fmt.Println("Minimum gap:", minGap(root))
}
复制代码
在这个示例中,我们首先定义了一个表示树节点的结构体Node
,然后实现了插入、查找最小值、查找最大值和计算最小间隔的函数。最后,在main
函数中,我们创建了一棵平衡二叉搜索树,并计算了 Q 中的最小间隔。
这个实现的时间复杂度如下:
INSERT 操作:O(log n),因为我们需要沿着树的高度向下查找合适的位置来插入新节点。
SEARCH 操作:O(log n),因为我们需要沿着树的高度向下查找目标值。
MIN-GAP 操作:O(n),因为我们需要遍历整个树来找到最小值和最大值。
360 智脑:
以下是 Go 语言实现的支持 MIN-GAP 操作的动态集合 Q 的数据结构和算法:
type Gap struct {
Value int
Gap int
Previous *Gap
Next *Gap
}
type GapSet struct {
Head *Gap
Tail *Gap
Length int
MinGap int
GapList map[int]*Gap
}
func NewGapSet() *GapSet {
return &GapSet{
Head: nil,
Tail: nil,
Length: 0,
MinGap: 0,
GapList: make(map[int]*Gap),
}
}
func (gs *GapSet) Insert(value int) {
// 如果集合为空,将新元素作为头尾节点
if gs.Length == 0 {
gs.Head = &Gap{
Value: value,
Gap: 0,
Previous: nil,
Next: nil,
}
gs.Tail = gs.Head
} else {
// 如果新元素小于头节点,将其插入到头节点之前
if value < gs.Head.Value {
newNode := &Gap{
Value: value,
Gap: 0,
Previous: nil,
Next: gs.Head,
}
gs.Head.Previous = newNode
gs.Head = newNode
} else {
// 如果新元素大于尾节点,将其插入到尾节点之后
if value > gs.Tail.Value {
newNode := &Gap{
Value: value,
Gap: 0,
Previous: gs.Tail,
Next: nil,
}
gs.Tail.Next = newNode
gs.Tail = newNode
} else {
// 如果新元素在中间,找到它的前一个节点和后一个节点,计算间隙并更新最小间隙
previousNode := gs.GapList[value-1].Next
nextNode := gs.GapList[value+1].Previous
gap := nextNode.Value - previousNode.Value - 2
gs.MinGap = min(gs.MinGap, gap)
// 将新元素插入到前一个节点和后一个节点之间
newNode := &Gap{
Value: value,
Gap: gap,
Previous: previousNode,
Next: nextNode,
}
previousNode.Next = newNode
nextNode.Previous = newNode
复制代码
智谱清言,代码不能运行:
为了有效地支持 INSERT、DELETE、SEARCH 和 MIN-GAP 操作,我们可以使用平衡二叉搜索树(如 AVL 树或红黑树)。在 Go 语言中,标准库container/heap
提供了实现最小堆的数据结构,我们可以使用它来实现这个数据集。但是,由于 Go 的标准库没有直接提供平衡二叉搜索树,我们需要自己实现或者使用第三方库。在这里,我们将使用 Go 标准库中的最小堆来解释基本的思路,并分析其性能。
以下是一个简化版的实现,它只包含 INSERT、DELETE 和 MIN-GAP 操作,因为 SEARCH 操作在平衡二叉搜索树中是高效的,其时间复杂度为 O(log n)。
package main
import (
"container/heap"
"fmt"
)
// 定义我们的优先队列元素
type IntHeapElement struct {
Value int
Index int // 元素在原始数组中的索引
HeapIndex int // 在堆中的索引
}
// 实现 heap.Interface 接口的四个方法以支持我们的 heap
type IntHeap []IntHeapElement
func (h IntHeap) Len() int { return len(h) }
func (h IntHeap) Less(i, j int) bool { return h[i].Value < h[j].Value }
func (h IntHeap) Swap(i, j int) { h[i], h[j] = h[j], h[i] }
func (h *IntHeap) Push(x interface{}) {
*h = append(*h, x.(IntHeapElement))
(*h)[(*h).Len()-1].HeapIndex = (*h).Len() - 1
}
func (h *IntHeap) Pop() interface{} {
old := *h
n := len(old)
x := old[n-1]
old[n-1] = zeroIntHeapElement
*h = old[0 : n-1]
x.HeapIndex = -1
return x
}
// 零值元素,用于初始化堆
var zeroIntHeapElement = IntHeapElement{}
// INSERT 函数将元素添加到堆中
func (q *IntHeap) INSERT(value int, index int) {
heap.Push(q, IntHeapElement{Value: value, Index: index})
}
// DELETE 函数从堆中删除元素
func (q *IntHeap) DELETE(index int) {
// 先将元素交换到堆的末尾
heap.Swap(q, 0, q.Len()-1)
// 弹出堆顶元素
element := heap.Pop(q).(IntHeapElement)
// 更新堆中元素的索引信息
for i, e := range *q {
if e.Index > element.Index {
e.HeapIndex = i
}
}
}
// MIN-GAP 函数返回堆中两个最接近的数之间的差值
func (q *IntHeap) MINGAP() int {
if q.Len() < 2 {
return 0
}
// 取得堆中的前两个元素
first := (*q)[0]
second := (*q)[1]
// 返回它们之间的差值
return first.Value - second.Value
}
func main() {
q := &IntHeap{}
// 插入元素
q.INSERT(1, 0)
q.INSERT(5, 1)
q.INSERT(9, 2)
q.INSERT(15, 3)
q.INSERT(18, 4)
q.INSERT(22, 5)
fmt.Println("MIN-GAP:", q.MINGAP()) // 应该输出 3
// 删除元素
q.DELETE(3) // 删除索引为3的元素,即15
fmt.Println("MIN-GAP:", q.MINGAP()) // 应该输出 2
}
复制代码
性能分析:
通义千问,代码正常运行:
要维护这样一个动态集合,并支持 INSERT、DELETE、SEARCH 和 MIN-GAP 操作,我们可以使用一个有序数据结构,比如平衡二叉搜索树(如 AVL 树或红黑树)。此外,我们将额外维护一个堆来记录所有相邻元素之间的间隙,以便快速获取最小间隙。
下面是简化版的 Go 语言实现思路:
package main
import (
"container/heap"
"math"
)
// 自定义结构体,存储元素值以及索引(用于堆中)
type GapItem struct {
Diff int // 元素间的差距
Element1, Element2 int // 差距对应的元素对
Index1, Index2 int // 对应元素在有序集合中的索引
}
// 优先队列,按差距从小到大排列
type MinGapHeap []GapItem
func (h MinGapHeap) Len() int { return len(h) }
func (h MinGapHeap) Less(i, j int) bool { return h[i].Diff < h[j].Diff }
func (h MinGapHeap) Swap(i, j int) { h[i], h[j] = h[j], h[i] }
func (h *MinGapHeap) Push(x interface{}) {
*h = append(*h, x.(GapItem))
}
func (h *MinGapHeap) Pop() interface{} {
old := *h
n := len(old)
x := old[n-1]
*h = old[0 : n-1]
return x
}
// 使用平衡二叉搜索树(这里简化为数组,实际可替换为标准库中的avl或红黑树等)
type OrderedSet struct {
data []int
gapHeap MinGapHeap
elementToHeap map[int]int // 记录元素与其在gapHeap中的索引映射
}
// 初始化有序集合
func NewOrderedSet() *OrderedSet {
return &OrderedSet{
data: make([]int, 0),
gapHeap: make(MinGapHeap, 0),
elementToHeap: make(map[int]int),
}
}
// 插入元素
func (os *OrderedSet) Insert(val int) {
os.data = append(os.data, val)
sort.Ints(os.data)
// 更新堆
if len(os.data) > 1 {
diff := os.data[len(os.data)-1] - os.data[len(os.data)-2]
os.updateGapHeap(len(os.data)-2, len(os.data)-1, diff)
}
}
// 删除元素
func (os *OrderedSet) Delete(val int) {
index := sort.SearchInts(os.data, val)
if index < len(os.data) && os.data[index] == val {
os.data = append(os.data[:index], os.data[index+1:]...)
// 更新堆,删除与val相关的间隙项
for _, heapIndex := range [2]int{os.elementToHeap[val], os.elementToHeap[val]-1} {
if heapIndex >= 0 && heapIndex < len(os.gapHeap) {
item := os.gapHeap[heapIndex]
if item.Element1 == val || item.Element2 == val {
os.removeGapFromHeap(heapIndex)
}
}
}
// 修复相邻元素之间的间隙
if index < len(os.data) {
diff := os.data[index] - os.data[index-1]
os.updateGapHeap(index-1, index, diff)
}
}
}
// 更新堆,插入或更新差距项
func (os *OrderedSet) updateGapHeap(i, j int, diff int) {
// 如果已经有对应的堆项,则更新,否则插入
if heapIndex, ok := os.elementToHeap[os.data[j]]; ok {
os.gapHeap[heapIndex].Diff = diff
heap.Fix(&os.gapHeap, heapIndex)
} else {
newItem := GapItem{
Diff: diff,
Element1: os.data[i],
Element2: os.data[j],
Index1: i,
Index2: j,
}
os.gapHeap.Push(newItem)
os.elementToHeap[os.data[j]] = len(os.gapHeap) - 1
}
// 可能的情况是更新后的间隙是最小的,因此需要调整堆顶
if len(os.gapHeap) > 0 && os.gapHeap[0].Diff > diff {
heap.Fix(&os.gapHeap, 0)
}
}
// 从堆中移除差距项
func (os *OrderedSet) removeGapFromHeap(heapIndex int) {
last := len(os.gapHeap) - 1
os.gapHeap.Swap(heapIndex, last)
os.gapHeap.Pop()
os.elementToHeap[os.gapHeap[last].Element2] = heapIndex
}
// 最小间隙
func (os *OrderedSet) MinGap() int {
if len(os.gapHeap) > 0 {
return os.gapHeap[0].Diff
}
return math.MaxInt32 // 当集合为空时返回极大值
}
// 搜索元素(此处略去,平衡二叉搜索树的标准实现中已有该功能)
// 示例用法
func main() {
q := NewOrderedSet()
q.Insert(1)
q.Insert(5)
q.Insert(9)
q.Insert(15)
q.Insert(18)
q.Insert(22)
fmt.Println(q.MinGap()) // 输出:3
}
复制代码
运行时间分析:
INSERT:时间复杂度为 O(log n),因为需要在平衡二叉搜索树中插入元素,并更新最小间隙堆。
DELETE:时间复杂度也是 O(log n),因为需要在平衡二叉搜索树中删除元素,并更新受影响的最小间隙堆。
SEARCH:对于平衡二叉搜索树,搜索时间复杂度为 O(log n)。
MIN-GAP:由于维护了一个最小间隙堆,常数时间内即可得到最小间隙。尽管插入和删除操作会调整堆,但在最坏情况下,调整堆的时间复杂度也为 O(log k),其中 k 为堆中元素数量,通常远小于 n。
总结:通过使用平衡二叉搜索树和最小间隙堆的数据结构组合,可以有效地支持 INSERT、DELETE、SEARCH 和 MIN-GAP 操作,并保持较高的效率,其中 INSERT、DELETE、SEARCH 的时间复杂度均为 O(log n),而 MIN-GAP 的时间复杂度为 O(1)(忽略堆调整的时间成本时)。
天工:
在 Go 语言中,我们可以使用平衡树(如红黑树)来实现这个动态集 Q。平衡树的一个主要优点是,无论数据集如何变化,它们都能保持对数级别的操作时间。
首先,定义一个节点类型:
type Node struct {
Value int
Left *Node
Right *Node
}
复制代码
然后,创建一个根节点:
接下来,实现插入、删除、查找和最小间隙四个操作:
插入操作:
func Insert(value int) {
newNode := &Node{Value: value}
current := Root
for {
if value < current.Value {
if current.Left == nil {
current.Left = newNode
break
} else {
current = current.Left
}
} else if value > current.Value {
if current.Right == nil {
current.Right = newNode
break
} else {
current = current.Right
}
} else {
// value already exists in the tree
break
}
}
Root = newNode
}
复制代码
删除操作:
func Delete(value int) {
if Root.Value == value {
if Root.Left == nil && Root.Right == nil {
Root = nil
return
} else if Root.Left == nil {
replaceRootWithRightChild(Root)
} else if Root.Right == nil {
replaceRootWithLeftChild(Root)
}
} else {
var current *Node
current = Root
for {
if value < current.Value {
if current.Left == nil {
return // value not found
} else {
current = current.Left
}
} else if value > current.Value {
if current.Right == nil {
return // value not found
} else {
current = current.Right
}
} else {
break
}
}
if current.Left == nil {
replaceParentLeftChildWithRightChild(current)
} else if current.Right == nil {
replaceParentRightChildWithLeftChild(current)
}
}
}
复制代码
查找操作:
func Search(value int) bool {
current := Root
for current != nil && current.Value != value {
if value < current.Value {
current = current.Left
} else {
current = current.Right
}
}
return current != nil
}
复制代码
最小间隙操作:
func MinGap() int {
current := Root
gap := math.MaxInt32
for {
if current.Left != nil && current.Left.Value+1 == current.Value {
gap = min(gap, current.Value-current.Left.Value)
}
if current.Right != nil && current.Right.Value-1 == current.Value {
gap = min(gap, current.Value-current.Right.Value+1)
}
if current.Left == nil && current.Right == nil {
return gap
}
if current.Left == nil {
current = current.Right
} else if current.Right == nil {
current = current.Left
} else {
if current.Left.Value < current.Right.Value {
current = current.Right
} else {
current = current.Left
}
}
}
}
复制代码
运行时间的分析:
插入操作:最坏情况下,每次插入都需要重新平衡整棵树。在红黑树中,最坏情况下的插入时间复杂度为 O(logn),其中 n 是树中的元素数量。
删除操作:最坏情况下,每次删除都可能导致整棵树重新平衡。最坏情况下的删除时间复杂度为 O(logn)。
查找操作:在平衡树中,查找操作的时间复杂度是 O(logn)。
最小间隙操作:该操作涉及遍历整棵树,因此最坏情况下的时间复杂度为 O(n),其中 n 是树中的元素数量。
注意:上述代码片段没有涵盖所有的边界情况和错误处理,并且没有进行过测试。在实际使用时,您应该添加适当的错误检查,并进行充分的测试。
灵小智:
要维护一个支持操作MIN-GAP的数的动态集Q,可以使用平衡二叉搜索树(BST)来实现。在go语言中可以使用内置的container包中的treemap来实现平衡二叉搜索树。
复制代码
首先,定义一个结构体来表示 Q 中的每个元素:
type Element struct {
value int
}
复制代码
然后,创建一个 treemap,用于存储 Q 中的元素:
import (
"fmt"
"github.com/emirpasic/gods/maps/treemap"
)
func main() {
Q := treemap.NewWithIntComparator()
}
复制代码
接下来,定义 INSERT、DELETE 和 SEARCH 操作的函数。其中,INSERT 操作将一个新元素插入到 Q 中,DELETE 操作删除给定值的元素,SEARCH 操作查找给定值的元素是否存在:
func Insert(Q *treemap.Map, value int) {
Q.Put(value, &Element{value})
}
func Delete(Q *treemap.Map, value int) {
Q.Remove(value)
}
func Search(Q *treemap.Map, value int) bool {
_, found := Q.Get(value)
return found
}
复制代码
最后,定义 MIN-GAP 操作的函数。该操作遍历整个 Q,找到相邻两个元素之间差值最小的情况,并返回差值:
func MinGap(Q *treemap.Map) int {
minGap := -1
prevValue := -1
for _, v := range Q.Keys() {
value := v.(int)
if prevValue != -1 {
gap := value - prevValue
if minGap == -1 || gap < minGap {
minGap = gap
}
}
prevValue = value
}
return minGap
}
复制代码
使用以上定义的函数来操作 Q:
func main() {
Q := treemap.NewWithIntComparator()
Insert(Q, 1)
Insert(Q, 5)
Insert(Q, 9)
Insert(Q, 15)
Insert(Q, 18)
Insert(Q, 22)
fmt.Println("MIN-GAP:", MinGap(Q)) // 输出:MIN-GAP: 3
Delete(Q, 15)
fmt.Println("MIN-GAP:", MinGap(Q)) // 输出:MIN-GAP: 4
fmt.Println("Search 18:", Search(Q, 18)) // 输出:Search 18: true
fmt.Println("Search 99:", Search(Q, 99)) // 输出:Search 99: false
}
复制代码
在以上实现中,INSERT、DELETE 和 SEARCH 操作的平均时间复杂度为 O(log n),其中 n 为 Q 中元素的数量。而 MIN-GAP 操作需要遍历整个 Q,所以它的时间复杂度为 O(n)。
总结:通过使用平衡二叉搜索树(treemap)来实现动态集 Q,并利用该数据结构的特性,可以高效地支持 INSERT、DELETE、SEARCH 和 MIN-GAP 操作。
chatgpt,代码正常运行:
下面是使用 Go 语言来实现支持操作 MIN-GAP 的动态集 Q 的示例代码:
package main
import (
"fmt"
"sort"
)
type DynamicSet struct {
numbers []int
}
// 初始化一个空的动态集Q
func NewDynamicSet() *DynamicSet {
return &DynamicSet{}
}
// 插入一个数到动态集Q中
func (ds *DynamicSet) Insert(num int) {
ds.numbers = append(ds.numbers, num)
sort.Ints(ds.numbers) // 对数组进行排序以便后续计算最小差值
}
// 从动态集Q中删除一个数
func (ds *DynamicSet) Delete(num int) {
index := -1
for i, n := range ds.numbers {
if n == num {
index = i
break
}
}
if index != -1 {
ds.numbers = append(ds.numbers[:index], ds.numbers[index+1:]...)
}
}
// 在动态集Q中搜索指定的数是否存在
func (ds *DynamicSet) Search(num int) bool {
index := sort.SearchInts(ds.numbers, num)
if index < len(ds.numbers) && ds.numbers[index] == num {
return true
}
return false
}
// 计算动态集Q中两个最接近的数之间的差值(即MIN-GAP操作)
func (ds *DynamicSet) MinGap() int {
minGap := 0
for i := 1; i < len(ds.numbers); i++ {
gap := ds.numbers[i] - ds.numbers[i-1]
if minGap == 0 || gap < minGap {
minGap = gap
}
}
return minGap
}
func main() {
q := NewDynamicSet()
q.Insert(1)
q.Insert(5)
q.Insert(9)
q.Insert(15)
q.Insert(18)
q.Insert(22)
fmt.Println("MIN-GAP:", q.MinGap()) // 输出最小差值
q.Delete(9) // 删除一个数
fmt.Println("Search 9:", q.Search(9)) // 搜索删除的数,返回false
q.Insert(14) // 插入一个新数
fmt.Println("MIN-GAP:", q.MinGap()) // 输出新的最小差值
fmt.Println("Search 14:", q.Search(14)) // 搜索插入的新数,返回true
}
复制代码
该示例代码中,动态集 Q 通过使用切片来存储数字,并使用内置的sort
包对数组进行排序。INSERT 操作将数字插入到切片中并进行排序,DELETE 操作删除指定数字,SEARCH 操作在排好序的切片中进行二分查找来确定数字是否存在,而 MIN-GAP 操作计算最接近两个数字之间的最小差值。
INSERT 和 DELETE 操作具有 O(log n)复杂度,其中 n 是动态集 Q 中元素的数量。SEARCH 操作具有 O(log n)复杂度,在二分查找过程中进行元素比较。MIN-GAP 操作遍历排好序的切片一次,因此具有 O(n)复杂度。
请注意,在实际应用中可能需要更多错误检查和边界条件处理来确保代码的健壮性和正确性。以上示例代码仅为演示目的。
kimi,代码正常运行:
在 Go 语言中,为了维护一个支持 MIN-GAP 操作的动态集合 Q,我们可以使用红黑树(Red-Black Tree)作为基础数据结构。红黑树是一种自平衡的二叉搜索树,它可以在 O(log n) 时间内完成插入、删除和搜索操作。为了支持 MIN-GAP 操作,我们需要在每个节点中存储额外的信息,即以该节点为根的子树中的最小差值。
以下是实现这一功能的 Go 代码示例:
package main
import (
"fmt"
)
type Node struct {
key int
color int // 0: black, 1: red
left *Node
right *Node
parent *Node
minGap int // 存储以当前节点为根的子树的最小差值
minVal int // 存储以当前节点为根的子树的最小值
maxVal int // 存储以当前节点为根的子树的最大值
}
func (n *Node) updateMinMaxGap() {
if n == nil {
return
}
n.minVal = n.key
n.maxVal = n.key
if n.left != nil {
n.minVal = min(n.minVal, n.left.minVal)
n.maxVal = max(n.maxVal, n.left.maxVal)
}
if n.right != nil {
n.minVal = min(n.minVal, n.right.minVal)
n.maxVal = max(n.maxVal, n.right.maxVal)
}
n.minGap = min(n.minVal-n.maxVal, n.minGap)
}
func min(a, b int) int {
if a < b {
return a
}
return b
}
func max(a, b int) int {
if a > b {
return a
}
return b
}
func insert(root *Node, key int) *Node {
if root == nil {
return &Node{key: key, minGap: max(0, key), minVal: key, maxVal: key}
}
if key < root.key {
root.left = insert(root.left, key)
root.left.parent = root
} else if key > root.key {
root.right = insert(root.right, key)
root.right.parent = root
} else {
// 处理重复的键值
// 在这里,你可以选择更新节点的值或者保持不变
}
root.updateMinMaxGap()
return root
}
func delete(root *Node, key int) *Node {
if root == nil {
return nil
}
// ...(省略删除操作的实现)
root.updateMinMaxGap()
return root
}
func search(root *Node, key int) *Node {
if root == nil || root.key == key {
return root
}
if key < root.key {
return search(root.left, key)
}
return search(root.right, key)
}
func minGap(root *Node) int {
if root == nil {
return math.MaxInt32
}
return root.minGap
}
func main() {
root := &Node{}
// 插入元素
for _, val := range []int{1, 5, 9, 15, 18, 22} {
root = insert(root, val)
}
// 输出最小差值
fmt.Println("MIN-GAP:", minGap(root))
}
复制代码
在这个实现中,我们为每个节点增加了 minGap
、minVal
和 maxVal
字段。在插入和删除操作中,我们需要更新这些字段以保持最小差值的正确性。updateMinMaxGap
函数用于更新当前节点及其子节点的最小差值、最小值和最大值。
插入操作的复杂度为 O(log n),因为红黑树是自平衡的。删除操作同样复杂度为 O(log n)。搜索操作的复杂度也是 O(log n)。MIN-GAP 操作的复杂度为 O(1),因为它只需要返回根节点的 minGap
字段。
请注意,这个实现假设树中的键值是唯一的。如果树中允许重复的键值,你需要在插入操作中添加额外的逻辑来处理这种情况。此外,这个实现没有考虑红黑树的颜色调整和旋转操作,这些操作在实际的红黑树实现中是必要的。
混元,抛 panic:
为了实现一个支持操作 MIN-GAP 的动态集 Q,我们可以使用一个平衡二叉搜索树(例如 AVL 树或红黑树)来存储 Q 中的数。这样,我们可以在 O(log n) 时间内执行 INSERT、DELETE 和 SEARCH 操作,其中 n 是 Q 中的元素数量。
以下是使用 Go 语言实现的一个简单的 AVL 树,用于维护一个支持 MIN-GAP 操作的动态集 Q:
package main
import (
"fmt"
"math"
)
type Node struct {
value int
left *Node
right *Node
height int
}
func newNode(value int) *Node {
return &Node{
value: value,
height: 1,
}
}
func (n *Node) updateHeight() {
n.height = 1 + int(math.Max(float64(n.left.height), float64(n.right.height)))
}
func (n *Node) balanceFactor() int {
return n.left.height - n.right.height
}
func (n *Node) rotateRight() *Node {
newRoot := n.left
n.left = newRoot.right
newRoot.right = n
n.updateHeight()
newRoot.updateHeight()
return newRoot
}
func (n *Node) rotateLeft() *Node {
newRoot := n.right
n.right = newRoot.left
newRoot.left = n
n.updateHeight()
newRoot.updateHeight()
return newRoot
}
func (n *Node) balance() *Node {
n.updateHeight()
if n.balanceFactor() > 1 {
if n.left.balanceFactor() < 0 {
n.left = n.left.rotateLeft()
}
return n.rotateRight()
}
if n.balanceFactor() < -1 {
if n.right.balanceFactor() > 0 {
n.right = n.right.rotateRight()
}
return n.rotateLeft()
}
return n
}
func insert(root *Node, value int) *Node {
if root == nil {
return newNode(value)
}
if value< root.value {
root.left = insert(root.left, value)
} else if value > root.value {
root.right = insert(root.right, value)
} else {
return root
}
return root.balance()
}
func delete(root *Node, value int) *Node {
if root == nil {
return nil
}
if value< root.value {
root.left = delete(root.left, value)
} else if value > root.value {
root.right = delete(root.right, value)
} else {
if root.left == nil {
return root.right
}
if root.right == nil {
return root.left
}
minValueNode := root.right
for minValueNode.left != nil {
minValueNode = minValueNode.left
}
root.value = minValueNode.value
root.right = delete(root.right, minValueNode.value)
}
return root.balance()
}
func search(root *Node, value int) *Node {
current := root
for current != nil {
if current.value == value {
return current
}
if value< current.value {
current = current.left
} else {
current = current.right
}
}
return nil
}
func minGap(root *Node) int {
if root == nil || root.left == nil {
return math.MaxInt32
}
leftMin := minGap(root.left)
rightMin := minGap(root.right)
return int(math.Min(float64(leftMin), float64(rightMin)))
}
func main() {
root := insert(nil, 1)
root = insert(root, 5)
root = insert(root, 9)
root = insert(root, 15)
root = insert(root, 18)
root = insert(root, 22)
fmt.Println("Minimum gap:", minGap(root))
}
复制代码
这个代码实现了一个简单的 AVL 树,用于维护一个支持 MIN-GAP 操作的动态集 Q。我们使用 insert、delete 和 search 函数来执行 INSERT、DELETE 和 SEARCH 操作,而 minGap 函数用于计算 Q 中两个最接近的数之间的差值。
请注意,这个实现假设 Q 中的数是唯一的。如果 Q 中可能存在重复的数,你需要根据具体需求进行相应的修改。
评论