1
数据湖(十九):SQL API 读取 Kafka 数据实时写入 Iceberg 表
作者:Lansonli
- 2022-11-06 广东
本文字数:1513 字
阅读完需:约 5 分钟
SQL API 读取 Kafka 数据实时写入 Iceberg 表
从 Kafka 中实时读取数据写入到 Iceberg 表中,操作步骤如下:
一、首先需要创建对应的 Iceberg 表
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
StreamTableEnvironment tblEnv = StreamTableEnvironment.create(env);
env.enableCheckpointing(1000);
//1.创建Catalog
tblEnv.executeSql("CREATE CATALOG hadoop_iceberg WITH (" +
"'type'='iceberg'," +
"'catalog-type'='hadoop'," +
"'warehouse'='hdfs://mycluster/flink_iceberg')");
//2.创建iceberg表 flink_iceberg_tbl
tblEnv.executeSql("create table hadoop_iceberg.iceberg_db.flink_iceberg_tbl3(id int,name string,age int,loc string) partitioned by (loc)");
复制代码
二、编写代码读取 Kafka 数据实时写入 Iceberg
public class ReadKafkaToIceberg {
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
StreamTableEnvironment tblEnv = StreamTableEnvironment.create(env);
env.enableCheckpointing(1000);
/**
* 1.需要预先创建 Catalog 及Iceberg表
*/
//1.创建Catalog
tblEnv.executeSql("CREATE CATALOG hadoop_iceberg WITH (" +
"'type'='iceberg'," +
"'catalog-type'='hadoop'," +
"'warehouse'='hdfs://mycluster/flink_iceberg')");
//2.创建iceberg表 flink_iceberg_tbl
// tblEnv.executeSql("create table hadoop_iceberg.iceberg_db.flink_iceberg_tbl3(id int,name string,age int,loc string) partitioned by (loc)");
//3.创建 Kafka Connector,连接消费Kafka中数据
tblEnv.executeSql("create table kafka_input_table(" +
" id int," +
" name varchar," +
" age int," +
" loc varchar" +
") with (" +
" 'connector' = 'kafka'," +
" 'topic' = 'flink-iceberg-topic'," +
" 'properties.bootstrap.servers'='node1:9092,node2:9092,node3:9092'," +
" 'scan.startup.mode'='latest-offset'," +
" 'properties.group.id' = 'my-group-id'," +
" 'format' = 'csv'" +
")");
//4.配置 table.dynamic-table-options.enabled
Configuration configuration = tblEnv.getConfig().getConfiguration();
// 支持SQL语法中的 OPTIONS 选项
configuration.setBoolean("table.dynamic-table-options.enabled", true);
//5.写入数据到表 flink_iceberg_tbl3
tblEnv.executeSql("insert into hadoop_iceberg.iceberg_db.flink_iceberg_tbl3 select id,name,age,loc from kafka_input_table");
//6.查询表数据
TableResult tableResult = tblEnv.executeSql("select * from hadoop_iceberg.iceberg_db.flink_iceberg_tbl3 /*+ OPTIONS('streaming'='true', 'monitor-interval'='1s')*/");
tableResult.print();
}
}
复制代码
启动以上代码,向 Kafka topic 中生产如下数据:
1,zs,18,beijing
2,ls,19,shanghai
3,ww,20,beijing
4,ml,21,shanghai
复制代码
我们可以看到控制台上有对应实时数据输出,查看对应的 Icberg HDFS 目录,数据写入成功。
划线
评论
复制
发布于: 刚刚阅读数: 6
版权声明: 本文为 InfoQ 作者【Lansonli】的原创文章。
原文链接:【http://xie.infoq.cn/article/78d78907d95e2307e498995a8】。文章转载请联系作者。
Lansonli
关注
微信公众号:三帮大数据 2022-07-12 加入
CSDN大数据领域博客专家,华为云享专家、阿里云专家博主、腾云先锋(TDP)核心成员、51CTO专家博主,全网六万多粉丝,知名互联网公司大数据高级开发工程师
评论