AscendC 从入门到精通系列(二)基于 Kernel 直调开发 AscendC 算子
- 2024-12-18 上海
本文字数:5824 字
阅读完需:约 19 分钟
本次主要讨论下 AscendC 算子的开发流程,基于 Kernel 直调工程的算子开发。
1 AscendC 算子开发的基本流程
使用 Ascend C 完成 Add 算子核函数开发;使用 ICPU_RUN_KF CPU 调测宏完成算子核函数 CPU 侧运行验证;使用<<<>>>内核调用符完成算子核函数 NPU 侧运行验证。在正式的开发之前,还需要先完成环境准备和算子分析工作,开发 Ascend C 算子的基本流程如下图所示:
2 核函数开发
本次以 add_custom.cpp 作为参考用例。Gitee 也有对应工程和完整代码。operator/AddCustomSample/KernelLaunch/AddKernelInvocationNeo · Ascend/samples - 码云 - 开源中国 (gitee.com)
2.1 核函数定义
首先要根据核函数定义 核函数-编程模型-Ascend C 算子开发-算子开发-开发指南-CANN 社区版 8.0.RC3.alpha003 开发文档-昇腾社区 (hiascend.com) 的规则进行核函数的定义,并在核函数中调用算子类的 Init 和 Process 函数。
// 给CPU调用
extern "C" __global__ __aicore__ void add_custom(GM_ADDR x, GM_ADDR y, GM_ADDR z)
{
KernelAdd op;
op.Init(x, y, z);
op.Process();
}
// 给NPU调用
#ifndef ASCENDC_CPU_DEBUG
void add_custom_do(uint32_t blockDim, void *stream, uint8_t *x, uint8_t *y, uint8_t *z)
{
add_custom<<<blockDim, nullptr, stream>>>(x, y, z);
}
#endif
2.2 算子类定义
根据矢量编程范式实现算子类,本样例中定义 KernelAdd 算子类,其具体成员如下:
class KernelAdd {
public:
__aicore__ inline KernelAdd(){}
// 初始化函数,完成内存初始化相关操作
__aicore__ inline void Init(GM_ADDR x, GM_ADDR y, GM_ADDR z){}
// 核心处理函数,实现算子逻辑,调用私有成员函数CopyIn、Compute、CopyOut完成矢量算子的三级流水操作
__aicore__ inline void Process(){}
private:
// 搬入函数,完成CopyIn阶段的处理,被核心Process函数调用
__aicore__ inline void CopyIn(int32_t progress){}
// 计算函数,完成Compute阶段的处理,被核心Process函数调用
__aicore__ inline void Compute(int32_t progress){}
// 搬出函数,完成CopyOut阶段的处理,被核心Process函数调用
__aicore__ inline void CopyOut(int32_t progress){}
private:
AscendC::TPipe pipe; //Pipe内存管理对象
AscendC::TQue<AscendC::QuePosition::VECIN, BUFFER_NUM> inQueueX, inQueueY; //输入数据Queue队列管理对象,QuePosition为VECIN
AscendC::TQue<AscendC::QuePosition::VECOUT, BUFFER_NUM> outQueueZ; //输出数据Queue队列管理对象,QuePosition为VECOUT
AscendC::GlobalTensor<half> xGm; //管理输入输出Global Memory内存地址的对象,其中xGm, yGm为输入,zGm为输出
AscendC::GlobalTensor<half> yGm;
AscendC::GlobalTensor<half> zGm;
};
核函数调用关系图
2.3 实现 Init,CopyIn,Compute,CopyOut 这个 4 个关键函数
Init 函数初始化输入资源
__aicore__ inline void Init(GM_ADDR x, GM_ADDR y, GM_ADDR z)
{
xGm.SetGlobalBuffer((__gm__ half *)x + BLOCK_LENGTH * AscendC::GetBlockIdx(), BLOCK_LENGTH);
yGm.SetGlobalBuffer((__gm__ half *)y + BLOCK_LENGTH * AscendC::GetBlockIdx(), BLOCK_LENGTH);
zGm.SetGlobalBuffer((__gm__ half *)z + BLOCK_LENGTH * AscendC::GetBlockIdx(), BLOCK_LENGTH);
pipe.InitBuffer(inQueueX, BUFFER_NUM, TILE_LENGTH * sizeof(half));
pipe.InitBuffer(inQueueY, BUFFER_NUM, TILE_LENGTH * sizeof(half));
pipe.InitBuffer(outQueueZ, BUFFER_NUM, TILE_LENGTH * sizeof(half));
}
Process函数中通过如下方式调用这三个:
__aicore__ inline void Process()
{
// loop count need to be doubled, due to double buffer
constexpr int32_t loopCount = TILE_NUM * BUFFER_NUM;
// tiling strategy, pipeline parallel
for (int32_t i = 0; i < loopCount; i++) {
CopyIn(i);
Compute(i);
CopyOut(i);
}
}
CopyIn 函数中通过如下方式调用这三个:1、使用 DataCopy 接口将 GlobalTensor 数据拷贝到 LocalTensor。2、使用 EnQue 将 LocalTensor 放入 VecIn 的 Queue 中。
__aicore__ inline void CopyIn(int32_t progress)
{
// alloc tensor from queue memory
AscendC::LocalTensor<half> xLocal = inQueueX.AllocTensor<half>();
AscendC::LocalTensor<half> yLocal = inQueueY.AllocTensor<half>();
// copy progress_th tile from global tensor to local tensor
AscendC::DataCopy(xLocal, xGm[progress * TILE_LENGTH], TILE_LENGTH);
AscendC::DataCopy(yLocal, yGm[progress * TILE_LENGTH], TILE_LENGTH);
// enque input tensors to VECIN queue
inQueueX.EnQue(xLocal);
inQueueY.EnQue(yLocal);
}
Compute 函数实现。1、使用 DeQue 从 VecIn 中取出 LocalTensor。2、使用 Ascend C 接口 Add 完成矢量计算。3、使用 EnQue 将计算结果 LocalTensor 放入到 VecOut 的 Queue 中。4、使用 FreeTensor 将释放不再使用的 LocalTensor。
__aicore__ inline void Compute(int32_t progress)
{
// deque input tensors from VECIN queue
AscendC::LocalTensor<half> xLocal = inQueueX.DeQue<half>();
AscendC::LocalTensor<half> yLocal = inQueueY.DeQue<half>();
AscendC::LocalTensor<half> zLocal = outQueueZ.AllocTensor<half>();
// call Add instr for computation
AscendC::Add(zLocal, xLocal, yLocal, TILE_LENGTH);
// enque the output tensor to VECOUT queue
outQueueZ.EnQue<half>(zLocal);
// free input tensors for reuse
inQueueX.FreeTensor(xLocal);
inQueueY.FreeTensor(yLocal);
}
CopyOut 函数实现。1、使用 DeQue 接口从 VecOut 的 Queue 中取出 LocalTensor。2、使用 DataCopy 接口将 LocalTensor 拷贝到 GlobalTensor 上。3、使用 FreeTensor 将不再使用的 LocalTensor 进行回收。
__aicore__ inline void CopyOut(int32_t progress)
{
// deque output tensor from VECOUT queue
AscendC::LocalTensor<half> zLocal = outQueueZ.DeQue<half>();
// copy progress_th tile from local tensor to global tensor
AscendC::DataCopy(zGm[progress * TILE_LENGTH], zLocal, TILE_LENGTH);
// free output tensor for reuse
outQueueZ.FreeTensor(zLocal);
}
3 核函数的运行验证
异构计算架构中,NPU(kernel 侧)与 CPU(host 侧)是协同工作的,完成了 kernel 侧核函数开发后,即可编写 host 侧的核函数调用程序,实现从 host 侧的 APP 程序调用算子,执行计算过程。
3.1 编写 CPU 侧调用程序
// 使用GmAlloc分配共享内存,并进行数据初始化
uint8_t* x = (uint8_t*)AscendC::GmAlloc(inputByteSize);
uint8_t* y = (uint8_t*)AscendC::GmAlloc(inputByteSize);
uint8_t* z = (uint8_t*)AscendC::GmAlloc(outputByteSize);
ReadFile("./input/input_x.bin", inputByteSize, x, inputByteSize);
ReadFile("./input/input_y.bin", inputByteSize, y, inputByteSize);
// 调用ICPU_RUN_KF调测宏,完成核函数CPU侧的调用
AscendC::SetKernelMode(KernelMode::AIV_MODE);
ICPU_RUN_KF(add_custom, blockDim, x, y, z); // use this macro for cpu debug
// 输出数据写出
WriteFile("./output/output_z.bin", z, outputByteSize);
// 调用GmFree释放申请的资源
AscendC::GmFree((void *)x);
AscendC::GmFree((void *)y);
AscendC::GmFree((void *)z);
3.2 编写 NPU 侧运行算子的调用程序
// AscendCL初始化
CHECK_ACL(aclInit(nullptr));
// 运行管理资源申请
int32_t deviceId = 0;
CHECK_ACL(aclrtSetDevice(deviceId));
aclrtStream stream = nullptr;
CHECK_ACL(aclrtCreateStream(&stream));
// 分配Host内存
uint8_t *xHost, *yHost, *zHost;
uint8_t *xDevice, *yDevice, *zDevice;
CHECK_ACL(aclrtMallocHost((void**)(&xHost), inputByteSize));
CHECK_ACL(aclrtMallocHost((void**)(&yHost), inputByteSize));
CHECK_ACL(aclrtMallocHost((void**)(&zHost), outputByteSize));
// 分配Device内存
CHECK_ACL(aclrtMalloc((void**)&xDevice, inputByteSize, ACL_MEM_MALLOC_HUGE_FIRST));
CHECK_ACL(aclrtMalloc((void**)&yDevice, inputByteSize, ACL_MEM_MALLOC_HUGE_FIRST));
CHECK_ACL(aclrtMalloc((void**)&zDevice, outputByteSize, ACL_MEM_MALLOC_HUGE_FIRST));
// Host内存初始化
ReadFile("./input/input_x.bin", inputByteSize, xHost, inputByteSize);
ReadFile("./input/input_y.bin", inputByteSize, yHost, inputByteSize);
CHECK_ACL(aclrtMemcpy(xDevice, inputByteSize, xHost, inputByteSize, ACL_MEMCPY_HOST_TO_DEVICE));
CHECK_ACL(aclrtMemcpy(yDevice, inputByteSize, yHost, inputByteSize, ACL_MEMCPY_HOST_TO_DEVICE));
// 用内核调用符<<<>>>调用核函数完成指定的运算,add_custom_do中封装了<<<>>>调用
add_custom_do(blockDim, nullptr, stream, xDevice, yDevice, zDevice);
CHECK_ACL(aclrtSynchronizeStream(stream));
// 将Device上的运算结果拷贝回Host
CHECK_ACL(aclrtMemcpy(zHost, outputByteSize, zDevice, outputByteSize, ACL_MEMCPY_DEVICE_TO_HOST));
WriteFile("./output/output_z.bin", zHost, outputByteSize);
// 释放申请的资源
CHECK_ACL(aclrtFree(xDevice));
CHECK_ACL(aclrtFree(yDevice));
CHECK_ACL(aclrtFree(zDevice));
CHECK_ACL(aclrtFreeHost(xHost));
CHECK_ACL(aclrtFreeHost(yHost));
CHECK_ACL(aclrtFreeHost(zHost));
// AscendCL去初始化
CHECK_ACL(aclrtDestroyStream(stream));
CHECK_ACL(aclrtResetDevice(deviceId));
CHECK_ACL(aclFinalize());
3.3 完整 main.cpp
/**
* @file main.cpp
*
* Copyright (C) 2024. Huawei Technologies Co., Ltd. All rights reserved.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
*/
#include "data_utils.h"
#ifndef ASCENDC_CPU_DEBUG
#include "acl/acl.h"
extern void add_custom_do(uint32_t blockDim, void *stream, uint8_t *x, uint8_t *y, uint8_t *z);
#else
#include "tikicpulib.h"
extern "C" __global__ __aicore__ void add_custom(GM_ADDR x, GM_ADDR y, GM_ADDR z);
#endif
int32_t main(int32_t argc, char *argv[])
{
uint32_t blockDim = 8;
size_t inputByteSize = 8 * 2048 * sizeof(uint16_t);
size_t outputByteSize = 8 * 2048 * sizeof(uint16_t);
#ifdef ASCENDC_CPU_DEBUG
uint8_t *x = (uint8_t *)AscendC::GmAlloc(inputByteSize);
uint8_t *y = (uint8_t *)AscendC::GmAlloc(inputByteSize);
uint8_t *z = (uint8_t *)AscendC::GmAlloc(outputByteSize);
ReadFile("./input/input_x.bin", inputByteSize, x, inputByteSize);
ReadFile("./input/input_y.bin", inputByteSize, y, inputByteSize);
AscendC::SetKernelMode(KernelMode::AIV_MODE);
ICPU_RUN_KF(add_custom, blockDim, x, y, z); // use this macro for cpu debug
WriteFile("./output/output_z.bin", z, outputByteSize);
AscendC::GmFree((void *)x);
AscendC::GmFree((void *)y);
AscendC::GmFree((void *)z);
#else
CHECK_ACL(aclInit(nullptr));
int32_t deviceId = 0;
CHECK_ACL(aclrtSetDevice(deviceId));
aclrtStream stream = nullptr;
CHECK_ACL(aclrtCreateStream(&stream));
uint8_t *xHost, *yHost, *zHost;
uint8_t *xDevice, *yDevice, *zDevice;
CHECK_ACL(aclrtMallocHost((void **)(&xHost), inputByteSize));
CHECK_ACL(aclrtMallocHost((void **)(&yHost), inputByteSize));
CHECK_ACL(aclrtMallocHost((void **)(&zHost), outputByteSize));
CHECK_ACL(aclrtMalloc((void **)&xDevice, inputByteSize, ACL_MEM_MALLOC_HUGE_FIRST));
CHECK_ACL(aclrtMalloc((void **)&yDevice, inputByteSize, ACL_MEM_MALLOC_HUGE_FIRST));
CHECK_ACL(aclrtMalloc((void **)&zDevice, outputByteSize, ACL_MEM_MALLOC_HUGE_FIRST));
ReadFile("./input/input_x.bin", inputByteSize, xHost, inputByteSize);
ReadFile("./input/input_y.bin", inputByteSize, yHost, inputByteSize);
CHECK_ACL(aclrtMemcpy(xDevice, inputByteSize, xHost, inputByteSize, ACL_MEMCPY_HOST_TO_DEVICE));
CHECK_ACL(aclrtMemcpy(yDevice, inputByteSize, yHost, inputByteSize, ACL_MEMCPY_HOST_TO_DEVICE));
add_custom_do(blockDim, stream, xDevice, yDevice, zDevice);
CHECK_ACL(aclrtSynchronizeStream(stream));
CHECK_ACL(aclrtMemcpy(zHost, outputByteSize, zDevice, outputByteSize, ACL_MEMCPY_DEVICE_TO_HOST));
WriteFile("./output/output_z.bin", zHost, outputByteSize);
CHECK_ACL(aclrtFree(xDevice));
CHECK_ACL(aclrtFree(yDevice));
CHECK_ACL(aclrtFree(zDevice));
CHECK_ACL(aclrtFreeHost(xHost));
CHECK_ACL(aclrtFreeHost(yHost));
CHECK_ACL(aclrtFreeHost(zHost));
CHECK_ACL(aclrtDestroyStream(stream));
CHECK_ACL(aclrtResetDevice(deviceId));
CHECK_ACL(aclFinalize());
#endif
return 0;
}
zjun
还未添加个人签名 2020-03-06 加入
还未添加个人简介
评论