写点什么

Kafka 业务日志采集最佳实践

作者:观测云
  • 2024-05-08
    上海
  • 本文字数:5098 字

    阅读完需:约 17 分钟

Kafka 业务日志采集最佳实践

简介

Apache Kafka 是一个分布式流处理平台,主要用于构建实时数据流管道和应用程序。在收集业务日志的场景中,Kafka 可以作为一个消息中间件,用于接收、存储和转发大量的日志数据。将 Kafka 与其他系统(如 Elasticsearch、Flume、Spark Streaming 等)集成,以提供更丰富的日志处理和分析功能。本文提到的是和观测云集成,即通过观测云的采集器 Datakit 采集 Kafka 中的业务日志,下面通过一些例子了解下观测云的快速集成效果。

实践环境

前置条件

软件和中间件

  • Kafka3.2.0

  • Datakit 采集器

  • JDK 8

硬件

  • 云服务器 CentOS7.9 64 位 4vCPU,8GB 内存,100GB 云盘一台。

接入方案

准备 Kafka 环境

安装 Kafka

下载 3.2.0 版本,解压即可使用。


wget https://archive.apache.org/dist/kafka/3.2.0/kafka_2.13-3.2.0.tgz


注:目前 Datakit 支持的 Kafka 版本有[version:0.8.2 ~ 3.2.0]

启动 Zookeeper 服务

$ bin/zookeeper-server-start.sh config/zookeeper.properties
复制代码

启动 KafkaServer

$ bin/kafka-server-start.sh config/server.properties
复制代码

创建 Topic

创建名为 testlog 的 Topic 。


$ bin/kafka-topics.sh --create --topic testlog --bootstrap-server localhost:9092
复制代码

启动 Producer

$ bin/kafka-console-producer.sh --topic testlog --bootstrap-server localhost:9092
复制代码

安装 DataKit

参考官网文档安装 DataKit 采集器


TOKEN 依据你的观测云工作空间来填写DK_DATAWAY=https://openway.guance.com?token=<TOKEN> bash -c "$(curl -L https://static.guance.com/datakit/install.sh)"
复制代码

开启 Kafka 采集器

进入 DataKit 安装目录下 (默认是 /usr/local/datakit/conf.d/ ) 的 conf.d/kafkamq 目录,复制 kafkamq.conf.sample 并命名为 kafkamq.conf


类似如下:


-rwxr-xr-x 1 root root 2574 Apr 30 23:52 kafkamq.conf-rwxr-xr-x 1 root root 2579 May  1 00:40 kafkamq.conf.sample
复制代码


调制 kafka 采集器配置如下:


  • addrs = ["localhost:9092"],该文采集器 DataKit 和 Kafka 安装到同一台操作系统中,localhost 即可。

  • kafka_version = "3.2.0",该文使用 Kafka 的版本。

  • [inputs.kafkamq.custom],删除注释符号“#”。

  • [inputs.kafkamq.custom.log_topic_map],删除注释符号“#”。

  • "testlog"="log.p",testlog 为 Topic 的名字,log.p 为观测云 Pipeline 可编程数据处理器的日志字段提取规则配置。涉及的业务日志和 log.p 的内容详细见下面的《使用 Pipeline》。


# {"version": "1.28.1", "desc": "do NOT edit this line"}
[[inputs.kafkamq]] addrs = ["localhost:9092"] # your kafka version:0.8.2 ~ 3.2.0 kafka_version = "3.2.0" group_id = "datakit-group" # consumer group partition assignment strategy (range, roundrobin, sticky) assignor = "roundrobin"
## rate limit. #limit_sec = 100 ## sample # sampling_rate = 1.0
## kafka tls config # tls_enable = true # tls_security_protocol = "SASL_PLAINTEXT" # tls_sasl_mechanism = "PLAIN" # tls_sasl_plain_username = "user" # tls_sasl_plain_password = "pw"
## -1:Offset Newest, -2:Offset Oldest offsets=-1
## skywalking custom #[inputs.kafkamq.skywalking] ## Required!send to datakit skywalking input. #dk_endpoint="http://localhost:9529" #thread = 8 #topics = [ # "skywalking-metrics", # "skywalking-profilings", # "skywalking-segments", # "skywalking-managements", # "skywalking-meters", # "skywalking-logging", #] #namespace = ""
## Jaeger from kafka. Please make sure your Datakit Jaeger collector is open !!! #[inputs.kafkamq.jaeger] ## Required! ipv6 is "[::1]:9529" #dk_endpoint="http://localhost:9529" #thread = 8 #source: agent,otel,others... #source = "agent" ## Required! topics #topics=["jaeger-spans","jaeger-my-spans"]
## user custom message with PL script. [inputs.kafkamq.custom] #spilt_json_body = true #thread = 8 ## spilt_topic_map determines whether to enable log splitting for specific topic based on the values in the spilt_topic_map[topic]. #[inputs.kafkamq.custom.spilt_topic_map] # "log_topic"=true # "log01"=false [inputs.kafkamq.custom.log_topic_map] "testlog"="log.p" # "log01"="log_01.p" #[inputs.kafkamq.custom.metric_topic_map] # "metric_topic"="metric.p" # "metric01"="rum_apm.p" #[inputs.kafkamq.custom.rum_topic_map] # "rum_topic"="rum_01.p" # "rum_02"="rum_02.p"
#[inputs.kafkamq.remote_handle] ## Required! #endpoint="http://localhost:8080" ## Required! topics #topics=["spans","my-spans"] # send_message_count = 100 # debug = false # is_response_point = true # header_check = false ## Receive and consume OTEL data from kafka. #[inputs.kafkamq.otel] #dk_endpoint="http://localhost:9529" #trace_api="/otel/v1/trace" #metric_api="/otel/v1/metric" #trace_topics=["trace1","trace2"] #metric_topics=["otel-metric","otel-metric1"] #thread = 8
## todo: add other input-mq
复制代码


注意:开启或调整 DataKit 的配置,需重启采集器(shell 下执行 datakit service -R)。

使用 Pipeline

log.p 规则内容


data = load_json(message)protocol = data["protocol"]response_code = data["response_code"]set_tag(protocol,protocol)set_tag(response_code,response_code)group_between(response_code,[200,300],"info","status")group_between(response_code,[400,499],"warning","status")group_between(response_code,[500,599],"error","status")
time = data["start_time"]set_tag(time,time)default_time(time)
复制代码

效果展示

发送业务日志样例

业务日志样例文件如下:


#info{"protocol":"HTTP/1.1","upstream_local_address":"172.20.32.97:33878","response_flags":"-","istio_policy_status":null,"trace_id":"5532224c1013b9ad6da1efe88778dd64","authority":"server:1338","method":"PUT","response_code":204,"duration":83,"upstream_service_time":"83","user_agent":"Jakarta Commons-HttpClient/3.1","bytes_received":103,"downstream_local_address":"172.21.2.130:1338","start_time":"2024-05-01T00:37:11.230Z","upstream_transport_failure_reason":null,"requested_server_name":null,"bytes_sent":0,"route_name":"routes","x_forwarded_for":"10.0.0.69,10.23.0.31","upstream_cluster":"outbound|1338|svc.cluster.local","request_id":"80ac7d31-a598-4dc8-bb74-1850593f61e4","downstream_remote_address":"10.23.0.31:0","path":"/api/dimensions/items","upstream_host":"172.20.9.101:1338"}#error{"protocol":"HTTP/1.1","upstream_local_address":"172.20.32.97:33878","response_flags":"-","istio_policy_status":null,"trace_id":"5532224c1013b9ad6da1efe88778dd64","authority":"server:1338","method":"PUT","response_code":504,"duration":83,"upstream_service_time":"83","user_agent":"Jakarta Commons-HttpClient/3.1","bytes_received":103,"downstream_local_address":"172.21.2.130:1338","start_time":"2024-05-01T00:39:11.230Z","upstream_transport_failure_reason":null,"requested_server_name":null,"bytes_sent":0,"route_name":"routes","x_forwarded_for":"10.0.0.69,10.23.0.31","upstream_cluster":"outbound|1338|svc.cluster.local","request_id":"80ac7d31-a598-4dc8-bb74-1850593f61e4","downstream_remote_address":"10.23.0.31:0","path":"/api/dimensions/items","upstream_host":"172.20.9.101:1338"}#warn{"protocol":"HTTP/1.1","upstream_local_address":"172.20.32.97:33878","response_flags":"-","istio_policy_status":null,"trace_id":"5532224c1013b9ad6da1efe88778dd64","authority":"server:1338","method":"PUT","response_code":404,"duration":83,"upstream_service_time":"83","user_agent":"Jakarta Commons-HttpClient/3.1","bytes_received":103,"downstream_local_address":"172.21.2.130:1338","start_time":"2024-05-01T00:38:11.230Z","upstream_transport_failure_reason":null,"requested_server_name":null,"bytes_sent":0,"route_name":"routes","x_forwarded_for":"10.0.0.69,10.23.0.31","upstream_cluster":"outbound|1338|svc.cluster.local","request_id":"80ac7d31-a598-4dc8-bb74-1850593f61e4","downstream_remote_address":"10.23.0.31:0","path":"/api/dimensions/items","upstream_host":"172.20.9.101:1338"}
复制代码

日志发送命令

在 Producer 启动后,分别发送如下三条日志内容,三条日志一条为 info 级别("response_code":204),另一条为 error 级别("response_code":504),最后一条为 warn 级别日志("response_code":404)。


>{"protocol":"HTTP/1.1","upstream_local_address":"172.20.32.97:33878","response_flags":"-","istio_policy_status":null,"trace_id":"5532224c1013b9ad6da1efe88778dd64","authority":"server:1338","method":"PUT","response_code":204,"duration":83,"upstream_service_time":"83","user_agent":"Jakarta Commons-HttpClient/3.1","bytes_received":103,"downstream_local_address":"172.21.2.130:1338","start_time":"2024-04-30T08:47:11.230Z","upstream_transport_failure_reason":null,"requested_server_name":null,"bytes_sent":0,"route_name":"routes","x_forwarded_for":"10.0.0.69,10.23.0.31","upstream_cluster":"outbound|1338|svc.cluster.local","request_id":"80ac7d31-a598-4dc8-bb74-1850593f61e4","downstream_remote_address":"10.23.0.31:0","path":"/api/dimensions/items","upstream_host":"172.20.9.101:1338"}>>>>>{"protocol":"HTTP/1.1","upstream_local_address":"172.20.32.97:33878","response_flags":"-","istio_policy_status":null,"trace_id":"5532224c1013b9ad6da1efe88778dd64","authority":"server:1338","method":"PUT","response_code":504,"duration":83,"upstream_service_time":"83","user_agent":"Jakarta Commons-HttpClient/3.1","bytes_received":103,"downstream_local_address":"172.21.2.130:1338","start_time":"2024-04-30T08:47:11.230Z","upstream_transport_failure_reason":null,"requested_server_name":null,"bytes_sent":0,"route_name":"routes","x_forwarded_for":"10.0.0.69,10.23.0.31","upstream_cluster":"outbound|1338|svc.cluster.local","request_id":"80ac7d31-a598-4dc8-bb74-1850593f61e4","downstream_remote_address":"10.23.0.31:0","path":"/api/dimensions/items","upstream_host":"172.20.9.101:1338"}>>>>{"protocol":"HTTP/1.1","upstream_local_address":"172.20.32.97:33878","response_flags":"-","istio_policy_status":null,"trace_id":"5532224c1013b9ad6da1efe88778dd64","authority":"server:1338","method":"PUT","response_code":404,"duration":83,"upstream_service_time":"83","user_agent":"Jakarta Commons-HttpClient/3.1","bytes_received":103,"downstream_local_address":"172.21.2.130:1338","start_time":"2024-04-30T08:47:11.230Z","upstream_transport_failure_reason":null,"requested_server_name":null,"bytes_sent":0,"route_name":"routes","x_forwarded_for":"10.0.0.69,10.23.0.31","upstream_cluster":"outbound|1338|svc.cluster.local","request_id":"80ac7d31-a598-4dc8-bb74-1850593f61e4","downstream_remote_address":"10.23.0.31:0","path":"/api/dimensions/items","upstream_host":"172.20.9.101:1338"}
复制代码

通过 DataKit 采集到 Kafka 的三条业务日志


使用 Pipeline 对业务日志进行字段提取

下图 protocol、response_code 以及 time 都是使用 Pipeline 提取后的效果。



用户头像

观测云

关注

还未添加个人签名 2021-02-08 加入

云时代的系统可观测平台

评论

发布
暂无评论
Kafka 业务日志采集最佳实践_kafka_观测云_InfoQ写作社区