写点什么

【Go】力扣 - 剑指 Offer 第五天 - 二维数组中的查找

作者:陈明勇
  • 2022-11-21
    广东
  • 本文字数:1720 字

    阅读完需:约 6 分钟

耐心和持久胜过激烈和狂热。

题目来源

来源:力扣(LeetCode)

链接:https://leetcode.cn/problems/er-wei-shu-zu-zhong-de-cha-zhao-lcof

著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

题目描述

在一个 n * m 的二维数组中,每一行都按照从左到右 非递减 的顺序排序,每一列都按照从上到下 非递减 的顺序排序。请完成一个高效的函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数。

示例

现有矩阵 matrix 如下:


[  [1,   4,  7, 11, 15],  [2,   5,  8, 12, 19],  [3,   6,  9, 16, 22],  [10, 13, 14, 17, 24],  [18, 21, 23, 26, 30]]
复制代码


给定 target = 5,返回 true。

给定 target = 20,返回 false。

题目分析

  • 根据题意,判断 target 是否存在于二维数组中,简单粗暴的方法就是暴力法,两层循环遍历,然后依判断每个元素是否与 target 相等,但是这样做效率很差,最坏情况下,需要 O(NM) 的时间复杂度,N 为二维数组的行数,M 为二维数组的列数。

  • 由题可知,每一行或每一列的元素按照递增的的顺序排序,根据元素的顺序特点,我们可以使用二分法进行算法优化,先遍历行或者列,再对列或者行进行二分查找,提高查询效率。

  • 逆时针 45° 翻转矩阵,如下图所示,观察元素由上而下的特点,类似一颗 二叉搜索树 (BST),3 为根节点,左分支 23 小,右分支 63 大,根据这个特点,可以再次优化算法,提高查询效率。


算法

暴力法

通过两次循环遍历,依次判断二维数组中的元素是否等于 target,相等则返回 true,否则返回 false

代码实现

func findNumberIn2DArray(matrix [][]int, target int) bool {  for i := 0; i < len(matrix); i++ {    for j := 0; j < len(matrix[i]); j++ {      if matrix[i][j] == target {        return true      }    }  }  return false}
复制代码

复杂度分析

时间复杂度:O(NM),其中 N 为矩阵行数,M 为矩阵列数。

空间复杂度:O(1),没有使用额外的内存空间。

二分法

  • 先循环遍历

  • 初始化左边界 left 和右边界 right,对 进行二分查找

  • 计算中间值 mid

  • 判断 mid 是否等于 target ,等于则返回 true

  • mid 大于 target 时,左边界 left 向右移动,移动到 mid + 1 的位置

  • mid 小于 target 时,右边界 right 向左移动,移动到 mid - 1 的位置

  • 循环结束之后,没有找到与 target 相等的元素,返回 false

代码实现

func findNumberIn2DArray(matrix [][]int, target int) bool {    for _, nums := range matrix {        left, right := 0, len(nums) - 1        for left <= right {            mid := (left + right) / 2            if target == nums[mid] {                return true            }            if nums[mid] > target {                right = mid - 1             } else {                left = mid + 1            }        }    }    return false}
复制代码

复杂度分析

时间复杂度:O(NlogM),其中 N 为矩阵行数,M 为矩阵列数,此算法最多循环 N * logM 次。

空间复杂度:O(1),没有使用额外的内存空间。

模拟 BST 标记查找

matrix = [[1, 2,3],[4, 5,6],[7, 8,9]]target = 4


  • 对二维数组进行判空,空则返回 false

  • 初始化 i = 0, j = len(matrix[0]) - 1 = 2,将标记点设置为 6,开始遍历,标记点与 target 进行比较

  • matrix[i][j] == target 时,找到目标值,返回 true

  • if matrix[i][j] > target 时,j--,将标记点左下移动

  • matrix[i][j] < target 时,i++,将标记点右下移动

  • 遍历结束后,未找到目标值,返回 false

代码实现

func findNumberIn2DArray(matrix [][]int, target int) bool {    if len(matrix) == 0 {        return false    }  for i, j := 0, len(matrix[0])-1; i <= len(matrix) - 1 && j >= 0; {    if matrix[i][j] == target {      return true    }    if matrix[i][j] > target {      j--    } else {      i++    }  }  return false}
复制代码

复杂度分析

时间复杂度:O(N + M),其中 N 为矩阵行数,M 为矩阵列数,此算法最多循环 N + M 次。

空间复杂度:O(1),没有使用额外的内存空间。

结尾

如果本文对你有帮助,欢迎点赞收藏加关注,如果本文有错误的地方,欢迎指出!

发布于: 刚刚阅读数: 3
用户头像

陈明勇

关注

一个热爱技术,喜欢专研技术的程序员。 2021-10-20 加入

还未添加个人简介

评论

发布
暂无评论
【Go】力扣 - 剑指 Offer 第五天 - 二维数组中的查找_Go_陈明勇_InfoQ写作社区