package main
import ( "fmt" "math/big")
func main() { if true {
if false { p := big.NewInt(0) p.SetString("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F", 16) for c := big.NewInt(20000); c.Cmp(big.NewInt(30000)) <= 0; c.Add(c, big.NewInt(1)) { fmt.Println("c = ", c, "-------------") r := ModCbrt(c, p) fmt.Println("答案:", r) for i := 0; i < len(r); i++ { if big.NewInt(0).Exp(r[i], big.NewInt(3), p).Cmp(c) == 0 {
} else { fmt.Println("答案错误", r[i], ",c = ", big.NewInt(0).Exp(r[i], big.NewInt(3), p)) return } } } return } if true { p := big.NewInt(0) p.SetString("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141", 16) for c := big.NewInt(20000); c.Cmp(big.NewInt(30000)) <= 0; c.Add(c, big.NewInt(1)) { fmt.Println("c = ", c, "-------------") r := ModCbrt(c, p) fmt.Println("答案:", r) for i := 0; i < len(r); i++ { if big.NewInt(0).Exp(r[i], big.NewInt(3), p).Cmp(c) == 0 {
} else { fmt.Println("答案错误", r[i], ",c = ", big.NewInt(0).Exp(r[i], big.NewInt(3), p)) return } } } return }
if true { p := big.NewInt(997) for c := big.NewInt(1); c.Cmp(big.NewInt(0).Add(p, big.NewInt(-1))) <= 0; c.Add(c, big.NewInt(1)) { fmt.Println("c = ", c, "-------------") r := ModCbrt(c, p) fmt.Println("答案:", r) for i := 0; i < len(r); i++ { if big.NewInt(0).Exp(r[i], big.NewInt(3), p).Cmp(c) == 0 {
} else { fmt.Println("答案错误", r[i], ",c = ", big.NewInt(0).Exp(r[i], big.NewInt(3), p)) return } } } } return } fmt.Println("")}
// 求模立方根的个数0,1,3func ModCbrtCount(c, p *big.Int) int { t := big.NewInt(0) t.Add(p, big.NewInt(-2)) t.Mod(t, big.NewInt(3)) if t.Cmp(big.NewInt(0)) == 0 { return 1 } t = big.NewInt(0).Add(p, big.NewInt(-1)) t.Div(t, big.NewInt(3)) if big.NewInt(0).Exp(c, t, p).Cmp(big.NewInt(1)) == 0 { return 3 } else { return 0 }}
// Peralta Methodfunc ModCbrt(a, p *big.Int) (ans []*big.Int) { ans = make([]*big.Int, 0) count := ModCbrtCount(a, p) if count == 1 { //有1个解 t := big.NewInt(0).Lsh(p, 1) t.Mod(t, p) t = t.Add(t, big.NewInt(-1)) t.Mod(t, p) t.Mul(t, big.NewInt(0).ModInverse(big.NewInt(3), p)) t.Mod(t, p) ans = append(ans, big.NewInt(0).Exp(a, t, p)) } else if count == 3 { //有3个解,Peralta Method算法
w := big.NewInt(0) p3 := big.NewInt(0).Add(p, big.NewInt(-1)) //(p-1)/3 p3.Mul(p3, big.NewInt(0).ModInverse(big.NewInt(3), p)) p3.Mod(p3, p) for i := big.NewInt(1); i.Cmp(p) < 0; i.Add(i, big.NewInt(1)) { w.Exp(i, p3, p) if w.Cmp(big.NewInt(1)) != 0 { break } } var x *big.Int key := big.NewInt(0) for x = big.NewInt(1); x.Cmp(p) < 0; x.Add(x, big.NewInt(1)) { key.Exp(x, big.NewInt(3), p) //key=x^3-a key.Add(key, big.NewInt(0).Neg(a)) key.Mod(key, p) if key.Cmp(big.NewInt(0)) != 0 && ModCbrtCount(key, p) == 0 { break } } r := Ring{x, big.NewInt(0).Add(p, big.NewInt(-1)), big.NewInt(0), key} pp := big.NewInt(0).Mul(p, p) // pp = (p*p+p+1)/3,注意pp是不能 mod p的,有点反直觉 pp.Add(pp, p) pp.Add(pp, big.NewInt(1)) pp.Div(pp, big.NewInt(3)) ansr := powerModI(r, pp, p) ans0 := ansr.a ans1 := big.NewInt(0) ans1.Mul(ans0, w) ans1.Mod(ans1, p) ans2 := big.NewInt(0) ans2.Mul(ans1, w) ans2.Mod(ans2, p) ans = append(ans, ans0, ans1, ans2) } return}
type Ring struct { a *big.Int b *big.Int c *big.Int w *big.Int}
// 复数乘法func mulI(x Ring, y Ring, p *big.Int) Ring { var res Ring res.a = big.NewInt(0) res.b = big.NewInt(0) res.c = big.NewInt(0) res.w = x.w w := x.w
a1 := big.NewInt(0) a2 := big.NewInt(0) a3 := big.NewInt(0) a1.Mul(x.a, y.a) //x.a*y.a a1.Mod(a1, p) a2.Mul(x.b, y.c) //x.b*y.c*key a2.Mod(a2, p) a2.Mul(a2, w) a2.Mod(a2, p) a3.Mul(x.c, y.b) //x.c*y.b*key a3.Mod(a3, p) a3.Mul(a3, w) a3.Mod(a3, p) res.a.Add(a1, a2) res.a.Mod(res.a, p) res.a.Add(res.a, a3) res.a.Mod(res.a, p)
b1 := big.NewInt(0) b2 := big.NewInt(0) b3 := big.NewInt(0) b1.Mul(x.a, y.b) //x.a*y.b b1.Mod(b1, p) b2.Mul(x.b, y.a) //x.b*y.a b2.Mod(b2, p) b3.Mul(x.c, y.c) //x.c*y.c*key b3.Mod(b3, p) b3.Mul(b3, w) b3.Mod(b3, p) res.b.Add(b1, b2) res.b.Mod(res.b, p) res.b.Add(res.b, b3) res.b.Mod(res.b, p)
c1 := big.NewInt(0) c2 := big.NewInt(0) c3 := big.NewInt(0) c1.Mul(x.a, y.c) //x.a*y.c c1.Mod(c1, p) c2.Mul(x.b, y.b) //x.b*y.b c2.Mod(c2, p) c3.Mul(x.c, y.a) //x.c*y.a c3.Mod(c3, p) res.c.Add(c1, c2) res.c.Mod(res.c, p) res.c.Add(res.c, c3) res.c.Mod(res.c, p)
return res}
// 复数快速幂,注意b不能取模func powerModI(a Ring, b, p *big.Int) Ring { res := Ring{big.NewInt(1), big.NewInt(0), big.NewInt(0), a.w} for b.Cmp(big.NewInt(0)) != 0 { if big.NewInt(0).Mod(b, big.NewInt(2)).Cmp(big.NewInt(1)) == 0 { res = mulI(res, a, p) } a = mulI(a, a, p) b.Rsh(b, 1) } return res}
评论