写点什么

拥有自我意识的 AI:AutoGPT | 得物技术

作者:得物技术
  • 2023-05-25
    上海
  • 本文字数:4265 字

    阅读完需:约 14 分钟

拥有自我意识的AI:AutoGPT | 得物技术

1.引言

ChatGPT 在当下已经风靡一时,作为自然语言处理模型的佼佼者,ChatGPT 的优势在于其能够生成流畅、连贯的对话,同时还能够理解上下文并根据上下文进行回答。针对不同的应用场景可以进行快速定制,例如,在客服、教育、娱乐等领域中,ChatGPT 可以作为智能助手为用户提供便捷的服务和娱乐体验。

从 GPT-3 到 GPT-4,我们可以看到在高级推理,输入设置,微调行为和理解更长的上下文信息等方面,ChatGPT 在不断的优化训练中已经取得了显著的进展。

但是针对于这种交互式的 GPT 模型,我们更希望看到能像电影里的人工智能,拥有自我意识,可以进行自我学习和进化。不需要通过频繁的引导和交互,我们只需要简单提出一个目标,AI 就能自主的完成所有的执行规划和逻辑处理,并不断进行自我论证和优化,最后完成我们提出的目标。

那么今天它来了,它就是 ChatGPT 的进化版本:AutoGPT



2.什么是 AutoGPT?

AutoGPT 是一个实验性开源应用程序,它利用 OpenAI 的 GPT-4 语言模型来创建完全自主和可定制的 AI 代理。它于 2023 年 3 月 30 日由 Toran Bruce Richards 发行。

Toran 是一名游戏开发商,并创立了一家名为 Significant Gravitas 的游戏公司。

在短短的一个多月时间里,AutoGPT 的 Git 项目已经获得了超过 12 万的 star,作为 GPT-4 完全自主运行的首批示例之一,AutoGPT 突破了 AI 的可能性界限。



与其他 AI 工具相比,AutoGPT 是独一无二的,因为它独立运行,这意味着你不再需要操纵模型来满足你的需求。相反,你只需要写下你的目标,然后 AI 会为你完成剩下的工作。因此,AutoGPT 从根本上改变了 AI 与人类之间的交互方式,人类不再需要发挥积极作用,同时仍然保持与 ChatGPT 等其他 AI 应用程序相同或更好的结果质量。

3.AutoGPT 如何工作?

AutoGPT 基于自主 AI 机制工作,其中 AI 系统创建不同的 AI 代理来满足特定任务,其中包括:

  • 任务创建代理: 当你在 AutoGPT 上输入目标时,第一个与任务创建代理交互的 AI 代理。根据你的目标,它将创建一个任务列表以及实现这些目标的步骤,并将其发送给优先级代理。

  • 任务优先级代理: 收到任务列表后,优先级 AI 代理会确保顺序正确且符合逻辑,然后再将其发送给执行代理。

  • 任务执行代理: 完成优先级排序后,执行代理将一个接一个地完成任务。这涉及利用 GPT-4、互联网和其他资源来获得结果。



上述代理之间相互通信。所以当执行代理完成所有任务,结果不理想时,它可以与任务创建代理通信,创建新的任务列表。三个代理之间的迭代循环,直到完成所有用户定义的目标。

AI 代理的行为也显示在用户界面上,将它们分为四组:思想、推理、计划、评判

  • 思想(THOUGHTS) :AI 代理分享它对目标的想法。

  • 推理(REASONING) :AI 代理推理如何开展并实现它的想法。

  • 计划(PLAN) :AI 代理通过分析,列举了所要完成任务的计划。

  • 评判(CRITICISM) :AI 进行自我评判,纠正错误并克服任何限制问题。

通过共享此计算流程,AutoGPT 可以进行反复尝试论证,并进行针对性的优化处理,可以在没有任何用户干预的情况下克服所遇到的所有问题。

3.AutoGPT 和 ChatGPT 的对比?

虽然底层的 LLM 模型是相同的,但是 AutoGPT 和 ChatGPT 之间还是有不少区别。

3.1  实时洞察

ChatGPT 使用的最新 GPT-4 模型是在与 GPT-3.5 相同的数据上训练的,该数据仅到 2021 年 9 月,你无法使用 ChatGPT 获得实时数据信息,因为你无法访问网站和在线平台来获取信息和提取信息。

相比之下,AutoGPT 可以访问互联网。它不仅可以上网冲浪,还可以验证来源是否合法。此外,AutoGPT 可以访问任何平台来执行任务。例如,如果你要求 AI 研究销售产品的前景并发送外联电子邮件,它会直接使用你的 Gmail 帐户起草并发送电子邮件。

3.2  内存管理

上下文窗口对于语言模型给出准确答案非常重要。但在像 GPT-4 这样的 LLM 中,窗口有 4000 到 8000 个令牌的限制。因此,如果要求超出限制,模型可能无法正确遵循所有指令,或者可能偏离正切并提供不可靠的输出。

相比之下,AutoGPT 擅长短期和长期内存管理。通过使用数据库,本地 Cache 和 Redis 进行内存管理,可以存储大量上下文信息或以前的经验,让 AI 模型做出更好的决策。

3.3  图像生成

AutoGPT 能够生成图像,因为它可以使用多种图像生成引擎,默认使用 DALL-E 。如果你想为你的 AI 代理启用图像生成功能,你需要访问 DALL-E 的 API。尽管是多模式输入方式,但此功能目前在 ChatGPT-4 中不可用。

3.4  文字转语音

你可以通过在命令行中键入python -m autogpt --speak在 AutoGPT 上启用文本到语音转换。但是每次与 AutoGPT 交互时都必须输入命令。你还可以通过将 AutoGPT 连接到多功能 AI 语音软件 Eleven Labs,为语音添加不同的声音。

4.AutoGPT 的局限性

毫无疑问,自主性为 AI 系统增加了一个新的维度。同时,我们也不能忽视 AutoGPT 的局限性和风险。下面列出了你必须知道的一些关键限制。

4.1  成本高昂

虽然功能令人惊叹,但 AutoGPT 的实用性可能会让你失望。由于 AutoGPT 使用昂贵的 GPT-4 模型,因此即使是小任务,完成每个任务的成本也可能很高。这主要是因为 AutoGPT 在特定任务的步骤中会多次使用 GPT-4。

4.2  经常陷入循环

用户在使用 AutoGPT 时面临的最常见问题是它陷入循环。如果这种情况持续超过几分钟,则可能意味着你必须重新启动该过程。发生这种情况是因为 AutoGPT 依赖 GPT-4 来正确定义和分解任务。因此,如果底层 LLM 返回结果不足以让 AutoGPT 采取任何行动就会出现反复尝试的问题。

4.3  数据安全性

由于 AutoGPT 经过充分授权,能自主运行并访问你的系统和互联网,例如使用你的 twitter 账号,登录 github,使用搜索引擎等,因此你的数据可能会被泄露。AutoGPT 没有安全代理,所以你在使用 AutoGPT 时必须小心,如果没有给出正确的说明和安全指南,你不能让模型继续运行。**

5.如何安装 AutoGPT?

与其他人工智能工具不同,AutoGPT 没有简单的注册程序来访问其平台和功能。在开始使用 AutoGPT 之前,你必须下载各种软件以满足要求。以下是详细的步骤要求:

  • 第一步:下载必备软件

首先你需要有一个 Git 账号,同时需要安装 Python3.1.0 或者更高版本,此外你必须还能熟练使用常用的 shell 命令或者有 Docker 容器进行项目启动和配置。

  • 第二步:设置你的 OpenAI API 密钥

如果你还没有,请创建一个 OpenAI 帐户(当然如果你在国内想要创建账号不是一件简单的事情,你可以参考网上其他文章进行账号申请)。打开 OpenAI 帐户后,打开_USER - API keys_转到 API 密钥选项卡。你将看到一个用于创建密钥的选项。单击它,然后复制密钥。



  • 第三步:克隆最新版本的 AutoGPT

(1)clone 项目

打开命令行工具通过命令git clone https://github.com/Torantulino/Auto-GPT.git 将项目 clone 到本地



(2)执行安装

通过命令cd Auto-GPT && ls -al进入目录后,可以看到有很多的文件,其中一个文件是 requirements.txt。在此文件中,你将看到运行 AutoGPT 所需的模块。



要安装这些模块,可以使用命令pip install -r requirements.txt 进行下载安装。



(3)修改配置

通过命令vim .env.template  进行 open-api-key 的配置(修改并替换your-openai-api-key),配置完成后执行mv .env.template .env 使配置生效



其他相关的配置可以参考表格按需进行

(4)开始使用

在完成以上配置以后,就已经完成了 AutoGPT 的基本配置,这时候就可以通过命令python -m autogpt 开启你的 AutoGPT 之旅 !



从上图可以看出,AutoGPT 需要你为 AI 取一个名字[Name],一个角色定位[Role],同时你可以为它制定目标[Goals](最多 5 个目标,如果你仅有一个目标就直接回车)。

在你制定完成目标以后,AutoGPT 会进行自主思考并分析你的目标[THOUGHTS],思考完成后开始理解并推理如何去完成这个目标[REASONING],然后开始自主拆解成具体的计划[PLAN],最后会提出评判[CRITICISM] 用以保证 AI 代理纠正错误并作出正确的决断。

完成以上的行为规划后,AutoGPT 会提示它将要作出的指令和动作[NEXT ACTION], 里面包含具体执行的命令[COMMAND]和参数[ARGUMENTS],用户可以在此时可以对风险命令进行识别,避免出现数据泄露等预期外的风险,这里可以通过y或者n进行授权或者拒绝 AutoGPT 接下来的指令动作。



AutoGPT 会通过以上步骤,进行多次循环,由于 AutoGPT 可以存储上下文和历史经验,所以每一次都会根据反馈结果进行更深入的思考,制定出更优的方案,最后列举他要执行的计划,反复尝试和补充,直到达到你预期的目标。

AutoGPT 会通过以上步骤,进行多次循环,由于 AutoGPT 可以存储上下文和历史经验,所以每一次都会根据反馈结果进行更深入的思考,制定出更优的方案,最后列举他要执行的计划,反复尝试和补充,直到达到你预期的目标。

(5)Docker 使用

当然,你也可以使用 docker 运行 :

// 最简单的方式就是通过docker-composedocker-compose build auto-gptdocker-compose run --rm auto-gpt
// 使用docker命令构建docker build -t auto-gpt .docker run -it --env-file=.env -v $PWD:/app auto-gpt

复制代码



点击并拖拽以移动

你可以传递额外的参数,例如,运行方式--gpt3only--continuous模式:

// docker-composedocker-compose run --rm auto-gpt --gpt3only --continuous
// docker docker run -it --env-file=.env -v $PWD:/app --rm auto-gpt --gpt3only --continuous

复制代码



点击并拖拽以移动

6.总结

与传统的文本生成技术相比,我们发现 AutoGPT 的能力进化令人震惊,它可以通过分析你的目标,自动拆解成它需要执行的任务,并在执行的过程中根据已有的经验和决策不断优化完善和总结,同时 AutoGPT 获取信息的手段也非常丰富,它能通过搜索引擎搜索,github,网页工具等渠道下载和提炼所需要的信息,通过本地缓存,语音转化,图像生成等插件能力,最终完成你所设立的目标。这种自我意识,自我迭代和更新的形态已经非常接近于电影《流浪地球》里的 moss 这种人工智能!

最后问题来了,这篇文章是 AutoGPT 自动生成的吗?

文:Leo

线下活动推荐:

时间: 2023 年 6 月 10 日(周六) 14:00-18:00 主题: 得物技术沙龙总第 18 期-无线技术第 4 期地点: 杭州·西湖区学院路 77 号得物杭州研发中心 12 楼培训教室(地铁 10 号线 &19 号线文三路站 G 口出)

活动亮点: 本次无线沙龙聚焦于最新的技术趋势和实践,将在杭州/线上为你带来四个令人期待的演讲话题,包括:《抖音创作工具-iOS 功耗监控与优化》、《得物隐私合规平台建设实践》、《网易云音乐-客户端大流量活动的日常化保障方案实践》、《得物 Android 编译优化》。相信这些话题将对你的工作和学习有所帮助,我们期待着与你共同探讨这些令人兴奋的技术内容!

点击报名: 无线技术沙龙

本文属得物技术原创,来源于:得物技术官网

未经得物技术许可严禁转载,否则依法追究法律责任!

发布于: 46 分钟前阅读数: 3
用户头像

得物技术

关注

得物APP技术部 2019-11-13 加入

关注微信公众号「得物技术」

评论

发布
暂无评论
拥有自我意识的AI:AutoGPT | 得物技术_人工智能_得物技术_InfoQ写作社区