object ProcessBrowseLogInfoToDM { def main(args: Array[String]): Unit = { //1.准备环境 val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment val tblEnv: StreamTableEnvironment = StreamTableEnvironment.create(env) env.enableCheckpointing(5000)
import org.apache.flink.streaming.api.scala._ /** * 2.创建 Kafka Connector,连接消费Kafka dwd中数据 * */ tblEnv.executeSql( """ |create table kafka_dws_user_login_wide_tbl ( | user_id string, | product_name string, | first_category_name string, | second_category_name string, | obtain_points string |) with ( | 'connector' = 'kafka', | 'topic' = 'KAFKA-DWS-BROWSE-LOG-WIDE-TOPIC', | 'properties.bootstrap.servers'='node1:9092,node2:9092,node3:9092', | 'scan.startup.mode'='earliest-offset', --也可以指定 earliest-offset 、latest-offset | 'properties.group.id' = 'my-group-id', | 'format' = 'json' |) """.stripMargin)
/** * 3.实时统计每个用户最近10s浏览的商品次数和商品一级、二级种类次数,存入到Clickhouse */
val dwsTbl:Table = tblEnv.sqlQuery( """ | select user_id,product_name,first_category_name,second_category_name from kafka_dws_user_login_wide_tbl """.stripMargin)
//4.将Row 类型数据转换成对象类型操作 val browseDS: DataStream[BrowseLogWideInfo] = tblEnv.toAppendStream[Row](dwsTbl) .map(row => { val user_id: String = row.getField(0).toString val product_name: String = row.getField(1).toString val first_category_name: String = row.getField(2).toString val second_category_name: String = row.getField(3).toString BrowseLogWideInfo(null, user_id, null, product_name, null, null, first_category_name, second_category_name, null) })
val dwsDS: DataStream[ProductVisitInfo] = browseDS.keyBy(info => { info.first_category_name + "-" + info.second_category_name + "-" + info.product_name }) .timeWindow(Time.seconds(10)) .process(new ProcessWindowFunction[BrowseLogWideInfo, ProductVisitInfo, String, TimeWindow] {
override def process(key: String, context: Context, elements: Iterable[BrowseLogWideInfo], out: Collector[ProductVisitInfo]): Unit = { val currentDt: String = DateUtil.getDateYYYYMMDD(context.window.getStart.toString) val startTime: String = DateUtil.getDateYYYYMMDDHHMMSS(context.window.getStart.toString) val endTime: String = DateUtil.getDateYYYYMMDDHHMMSS(context.window.getEnd.toString) val arr: Array[String] = key.split("-")
val firstCatName: String = arr(0) val secondCatName: String = arr(1) val productName: String = arr(2) val cnt: Int = elements.toList.size out.collect(ProductVisitInfo(currentDt, startTime, endTime, firstCatName, secondCatName, productName, cnt)) }
})
/** * 5.将以上结果写入到Clickhouse表 dm_product_visit_info 表中 * create table dm_product_visit_info( * current_dt String, * window_start String, * window_end String, * first_cat String, * second_cat String, * product String, * product_cnt UInt32 * ) engine = MergeTree() order by current_dt * */
//准备向ClickHouse中插入数据的sql val insertIntoCkSql = "insert into dm_product_visit_info (current_dt,window_start,window_end,first_cat,second_cat,product,product_cnt) values (?,?,?,?,?,?,?)"
val ckSink: SinkFunction[ProductVisitInfo] = MyClickHouseUtil.clickhouseSink[ProductVisitInfo](insertIntoCkSql,new JdbcStatementBuilder[ProductVisitInfo] { override def accept(pst: PreparedStatement, productVisitInfo: ProductVisitInfo): Unit = { pst.setString(1,productVisitInfo.currentDt) pst.setString(2,productVisitInfo.windowStart) pst.setString(3,productVisitInfo.windowEnd) pst.setString(4,productVisitInfo.firstCat) pst.setString(5,productVisitInfo.secondCat) pst.setString(6,productVisitInfo.product) pst.setLong(7,productVisitInfo.productCnt)
} })
//针对数据加入sink dwsDS.addSink(ckSink)
env.execute()
}}
评论