【GreatSQL 优化器 -10】find_best_ref
- 2025-01-10 福建
本文字数:12674 字
阅读完需:约 42 分钟
【GreatSQL 优化器-10】find_best_ref
一、find_best_ref 介绍
GreatSQL 的优化器对于 join 的表需要根据行数和 cost 来确定最后哪张表先执行哪张表后执行,这里面就涉及到预估满足条件的表数据,在 keyuse_array 数组有值的情况下,会用 find_best_ref 函数来通过索引进行 cost 和 rows 的估计,并且会找出最优的索引。这样就可能不会继续用后面的 calculate_scan_cost()进行全表扫描计算 cost,可以节省查询时间。
这个功能是对之前【优化器 05-条件过滤】的补充功能,二者有可能一起用,也有可能只选择一种计算,要看具体条件。
下面用一个简单的例子来说明 find_best_ref 函数获得的结果。
CREATE TABLE t1 (c1 INT PRIMARY KEY, c2 INT,date1 DATETIME);INSERT INTO t1 VALUES (1,10,'2021-03-25 16:44:00.123456'),(2,1,'2022-03-26 16:44:00.123456'),(3,4,'2023-03-27 16:44:00.123456'),(5,5,'2024-03-25 16:44:00.123456'),(7,null,'2020-03-25 16:44:00.123456'),(8,10,'2020-10-25 16:44:00.123456'),(11,16,'2023-03-25 16:44:00.123456');CREATE TABLE t2 (cc1 INT PRIMARY KEY, cc2 INT);INSERT INTO t2 VALUES (1,3),(2,1),(3,2),(4,3),(5,15);CREATE TABLE t3 (ccc1 INT, ccc2 varchar(100));INSERT INTO t3 VALUES (1,'aa1'),(2,'bb1'),(3,'cc1'),(4,'dd1'),(null,'ee');CREATE INDEX idx1 ON t1(c2);CREATE INDEX idx2 ON t1(c2,date1);CREATE INDEX idx2_1 ON t2(cc2);CREATE INDEX idx3_1 ON t3(ccc1);
greatsql> SELECT * FROM t1 join t2 ON t1.c1=t2.cc1 and t1.c2<5; { "ref_optimizer_key_uses": [ 首先这里要有keyuse_array { "table": "`t1`", "field": "c1", "equals": "`t2`.`cc1`", "null_rejecting": true }, { "table": "`t2`", "field": "cc1", "equals": "`t1`.`c1`", "null_rejecting": true } ] }, "considered_execution_plans": [ { "plan_prefix": [ ], "table": "`t1`", "best_access_path": { "considered_access_paths": [ { "access_type": "ref", "index": "PRIMARY", "usable": false, "chosen": false }, { "rows_to_scan": 2, "filtering_effect": [ ], "final_filtering_effect": 1, "access_type": "range", "range_details": { "used_index": "idx2" }, "resulting_rows": 2, "cost": 0.660457, "chosen": true } ] }, "condition_filtering_pct": 100, "rows_for_plan": 2, "cost_for_plan": 0.660457, "rest_of_plan": [ { "plan_prefix": [ "`t1`" ], "table": "`t2`", "best_access_path": { "considered_access_paths": [ { "access_type": "eq_ref", "index": "PRIMARY", "rows": 1, 这里就是通过find_best_ref()获得的结果 "cost": 0.7, 这里就是通过find_best_ref()获得的结果 "chosen": true, "cause": "clustered_pk_chosen_by_heuristics" }, { "access_type": "scan", "chosen": false, "cause": "covering_index_better_than_full_scan" } ] }, "condition_filtering_pct": 100, "rows_for_plan": 2, "cost_for_plan": 1.36046, "chosen": true } ] }, { "plan_prefix": [ ], "table": "`t2`", "best_access_path": { "considered_access_paths": [ { "access_type": "ref", "index": "PRIMARY", "usable": false, "chosen": false }, { "rows_to_scan": 5, "filtering_effect": [ ], "final_filtering_effect": 1, "access_type": "scan", "resulting_rows": 5, "cost": 0.75, "chosen": true } ] }, "condition_filtering_pct": 100, "rows_for_plan": 5, "cost_for_plan": 0.75, "rest_of_plan": [ { "plan_prefix": [ "`t2`" ], "table": "`t1`", "best_access_path": { "considered_access_paths": [ { "access_type": "eq_ref", "index": "PRIMARY", "rows": 1, 这里就是通过find_best_ref()获得的结果 "cost": 5.5, 这里就是通过find_best_ref()获得的结果 "chosen": true, "cause": "clustered_pk_chosen_by_heuristics" }, { "rows_to_scan": 2, "filtering_effect": [ ], "final_filtering_effect": 1, "access_type": "range", "range_details": { "used_index": "idx2" }, "resulting_rows": 2, "cost": 3.30229, "chosen": true } ] }, "condition_filtering_pct": 100, "rows_for_plan": 10, "cost_for_plan": 4.05229, "pruned_by_cost": true } ] } ]
二、find_best_ref 代码解释
find_best_ref 的计算在 best_access_path 函数实现,用来在 keyuse_array 数组有值的时候,预估不同 join 连接时候的 join 表的读取行数和可能的 cost,以及找出 cost 最低的索引。
void Optimize_table_order::best_access_path(JOIN_TAB *tab, const table_map remaining_tables, const uint idx, bool disable_jbuf, const double prefix_rowcount, POSITION *pos) { if (tab->keyuse() != nullptr && (table->file->ha_table_flags() & HA_NO_INDEX_ACCESS) == 0 && (!table->set_counter())) best_ref = find_best_ref(tab, remaining_tables, idx, prefix_rowcount, &found_condition, &ref_depend_map, &used_key_parts); 接着会进行一系列判断来决定是否要继续用calculate_scan_cost()方式来进行估计cost,然后二者进行比较选取更小的cost。 具体见下面<<采用的rows和cost结果>>表 两个方式都会使用calculate_condition_filter()计算条件过滤百分比。}
Key_use *Optimize_table_order::find_best_ref() { ha_rows distinct_keys_est = tab->records() / MATCHING_ROWS_IN_OTHER_TABLE; // 遍历keyuse_array数组,按照索引进行计算行数和cost,选取最优的索引 for (Key_use *keyuse = tab->keyuse(); keyuse->table_ref == tab->table_ref;) { 如果是第一张表就跳过,因为第一张表不需要用索引扫描。 主要计算得出下面<<find_best_ref函数获得的结果>>表里的三个变量结果,用于找出最优索引。 }}
表:采用的 rows 和 cost 结果
表:find_best_ref 函数获得的结果
表一:cur_fanout 计算方式
表二:cur_read_cost 计算方式
表三:distinct_keys_est 计算方式
注:10 是 MATCHING_ROWS_IN_OTHER_TABLE
表四:keyuse->ref_table_rows 计算方式
注:通过 JOIN::optimize_keyuse()函数获得
表五:索引类型选择优先级
三、实际例子说明
接下来看一开始的例子来说明上面的代码:
greatsql> SELECT * FROM t1 JOIN t2 ON t1.c1=t2.cc1 AND t1.c2<5; { "ref_optimizer_key_uses": [ { "table": "`t1`", "field": "c1", "equals": "`t2`.`cc1`", "null_rejecting": true }, { "table": "`t2`", "field": "cc1", "equals": "`t1`.`c1`", "null_rejecting": true } ] }, "considered_execution_plans": [ { "plan_prefix": [ ], "table": "`t1`", "best_access_path": { "considered_access_paths": [ { "access_type": "ref", 第一张表不考虑用ref扫描 "index": "PRIMARY", "usable": false, "chosen": false }, { "rows_to_scan": 2, 用非best_ref方式扫描 "filtering_effect": [ ], "final_filtering_effect": 1, "access_type": "range", "range_details": { "used_index": "idx2" }, "resulting_rows": 2, "cost": 0.660457, "chosen": true } ] }, "condition_filtering_pct": 100, "rows_for_plan": 2, "cost_for_plan": 0.660457, "rest_of_plan": [ { "plan_prefix": [ "`t1`" ], "table": "`t2`", "best_access_path": { "considered_access_paths": [ { "access_type": "eq_ref", "index": "PRIMARY", "rows": 1, eq_ref扫描固定只有一行 "cost": 0.7, 计算公式=0.5(cur_read_cost) + 2(上一张表的行数) * 1(这张表行数) * 0.1 "chosen": true, "cause": "clustered_pk_chosen_by_heuristics" }, { "access_type": "scan", 因为t2没有mm tree因此只能选择全表扫描,又因为之前的索引扫描更优,所以这里不选择全表扫描 "chosen": false, "cause": "covering_index_better_than_full_scan" } ] }, "condition_filtering_pct": 100, "rows_for_plan": 2, "cost_for_plan": 1.36046, "chosen": true } ] }, { "plan_prefix": [ ], "table": "`t2`", "best_access_path": { "considered_access_paths": [ { "access_type": "ref", 第一张表不考虑用ref扫描 "index": "PRIMARY", "usable": false, "chosen": false }, { "rows_to_scan": 5, "filtering_effect": [ ], "final_filtering_effect": 1, "access_type": "scan", "resulting_rows": 5, "cost": 0.75, "chosen": true } ] }, "condition_filtering_pct": 100, "rows_for_plan": 5, "cost_for_plan": 0.75, "rest_of_plan": [ { "plan_prefix": [ "`t2`" ], "table": "`t1`", "best_access_path": { "considered_access_paths": [ { "access_type": "eq_ref", "index": "PRIMARY", "rows": 1, eq_ref扫描固定只有一行 "cost": 5.5, 计算公式=5(cur_read_cost) + 5(上一张表的行数) * 1(这张表行数) * 0.1 "chosen": true, "cause": "clustered_pk_chosen_by_heuristics" }, { "rows_to_scan": 2, "filtering_effect": [ ], "final_filtering_effect": 1, "access_type": "range", 这里因为t1表有mm tree但是扫描方式不是ROWID_INTERSECTION所以还要继续用calculate_scan_cost来估计cost,然后跟上面用eq_ref方式扫描方式进行对比,看哪个更优 "range_details": { "used_index": "idx2" }, "resulting_rows": 2, "cost": 3.30229, 因为这里的cost更低,因此舍弃上面的eq_ref扫描方式改为range扫描方式 "chosen": true } ] }, "condition_filtering_pct": 100, "rows_for_plan": 10, "cost_for_plan": 4.05229, "pruned_by_cost": true } ] } ]
再看一个三张表连接的例子,可以看到 eq_ref 扫描方式也要估算条件过滤百分比,并且第一张表不用索引扫描,也就不需要执行 find_best_ref 函数。
greatsql> SELECT * FROM t1 JOIN t2 JOIN t3 ON t1.c1=t2.cc1 AND t3.ccc1=t2.cc1 AND t1.c2<15 AND t1.c2=10; { "considered_execution_plans": [ { "plan_prefix": [ ], "table": "`t1`", "best_access_path": { "considered_access_paths": [ { "access_type": "ref", "index": "PRIMARY", "usable": false, "chosen": false }, { "access_type": "ref", "index": "idx1", "rows": 2, "cost": 0.7, "chosen": true }, { "access_type": "ref", "index": "idx2", "rows": 2, "cost": 0.450457, "chosen": true }, { "access_type": "range", "range_details": { "used_index": "idx2" }, "chosen": false, "cause": "heuristic_index_cheaper" } ] }, "condition_filtering_pct": 100, "rows_for_plan": 2, "cost_for_plan": 0.450457, "rest_of_plan": [ { "plan_prefix": [ "`t1`" ], "table": "`t2`", "best_access_path": { "considered_access_paths": [ { "access_type": "eq_ref", "index": "PRIMARY", "rows": 1, "cost": 0.7, "chosen": true, "cause": "clustered_pk_chosen_by_heuristics" }, { "access_type": "scan", "chosen": false, "cause": "covering_index_better_than_full_scan" } ] }, "condition_filtering_pct": 100, "rows_for_plan": 2, "cost_for_plan": 1.15046, "rest_of_plan": [ { "plan_prefix": [ "`t1`", "`t2`" ], "table": "`t3`", "best_access_path": { "considered_access_paths": [ { "access_type": "ref", "index": "idx3_1", "rows": 1, "cost": 0.7, "chosen": true }, { "rows_to_scan": 5, "filtering_effect": [ ], "final_filtering_effect": 1, "access_type": "scan", "using_join_cache": true, "buffers_needed": 1, "resulting_rows": 5, "cost": 1.25004, "chosen": false } ] }, "added_to_eq_ref_extension": true, "condition_filtering_pct": 100, "rows_for_plan": 2, "cost_for_plan": 1.85046, "chosen": true } ] } ] }, { "plan_prefix": [ ], "table": "`t2`", "best_access_path": { "considered_access_paths": [ { "access_type": "ref", "index": "PRIMARY", "usable": false, "chosen": false }, { "rows_to_scan": 5, "filtering_effect": [ ], "final_filtering_effect": 1, "access_type": "scan", "resulting_rows": 5, "cost": 0.75, "chosen": true } ] }, "condition_filtering_pct": 100, "rows_for_plan": 5, "cost_for_plan": 0.75, "rest_of_plan": [ { "plan_prefix": [ "`t2`" ], "table": "`t1`", "best_access_path": { "considered_access_paths": [ { "access_type": "eq_ref", "index": "PRIMARY", "rows": 1, "cost": 1.75, "chosen": true, "cause": "clustered_pk_chosen_by_heuristics" }, { "rows_to_scan": 2, "filtering_effect": [ ], "final_filtering_effect": 1, "access_type": "range", "range_details": { "used_index": "idx2" }, "resulting_rows": 2, "cost": 3.30229, "chosen": false } ] }, "condition_filtering_pct": 28.5714, 这里看到eq_ref扫描方式也要估算条件过滤百分比 "rows_for_plan": 1.42857, "cost_for_plan": 2.5, "pruned_by_cost": true }, { "plan_prefix": [ "`t2`" ], "table": "`t3`", "best_access_path": { "considered_access_paths": [ { "access_type": "ref", "index": "idx3_1", "rows": 1, "cost": 1.75, "chosen": true }, { "rows_to_scan": 5, "filtering_effect": [ ], "final_filtering_effect": 1, "access_type": "scan", "using_join_cache": true, "buffers_needed": 1, "resulting_rows": 5, "cost": 2.75004, "chosen": false } ] }, "condition_filtering_pct": 100, "rows_for_plan": 5, "cost_for_plan": 2.5, "pruned_by_cost": true } ] }, { "plan_prefix": [ ], "table": "`t3`", "best_access_path": { "considered_access_paths": [ { "access_type": "ref", "index": "idx3_1", "usable": false, "chosen": false }, { "rows_to_scan": 5, "filtering_effect": [ ], "final_filtering_effect": 1, "access_type": "scan", "resulting_rows": 5, "cost": 0.75, "chosen": true } ] }, "condition_filtering_pct": 100, "rows_for_plan": 5, "cost_for_plan": 0.75, "rest_of_plan": [ { "plan_prefix": [ "`t3`" ], "table": "`t1`", "best_access_path": { "considered_access_paths": [ { "access_type": "eq_ref", "index": "PRIMARY", "rows": 1, "cost": 1.75, "chosen": true, "cause": "clustered_pk_chosen_by_heuristics" }, { "rows_to_scan": 2, "filtering_effect": [ ], "final_filtering_effect": 1, "access_type": "range", "range_details": { "used_index": "idx2" }, "resulting_rows": 2, "cost": 3.30229, "chosen": false } ] }, "condition_filtering_pct": 28.5714, "rows_for_plan": 1.42857, "cost_for_plan": 2.5, "pruned_by_cost": true }, { "plan_prefix": [ "`t3`" ], "table": "`t2`", "best_access_path": { "considered_access_paths": [ { "access_type": "eq_ref", "index": "PRIMARY", "rows": 1, "cost": 1.75, "chosen": true, "cause": "clustered_pk_chosen_by_heuristics" }, { "access_type": "scan", "chosen": false, "cause": "covering_index_better_than_full_scan" } ] }, "condition_filtering_pct": 100, "rows_for_plan": 5, "cost_for_plan": 2.5, "pruned_by_cost": true } ] } ] },
四、总结
从上面优化器的步骤我们认识了find_best_ref()进行 rows 和 cost 估计的过程,以及知道了使用这个结果的条件。需要注意的是,只有"ref_optimizer_key_uses"项目有值的情况才有可能使用这个结果。
版权声明: 本文为 InfoQ 作者【GreatSQL】的原创文章。
原文链接:【http://xie.infoq.cn/article/1d63cc7af54714a0013701ae7】。文章转载请联系作者。
GreatSQL
GreatSQL社区 2023-01-31 加入
GreatSQL是由万里数据库维护的MySQL分支,专注于提升MGR可靠性及性能,支持InnoDB并行查询特性,是适用于金融级应用的MySQL分支版本。 社区:https://greatsql.cn/ Gitee: https://gitee.com/GreatSQL/GreatSQL









评论