写点什么

使用 Ingest Pipeline 在 Elasticsearch 中对数据进行预处理

作者:Se7en
  • 2023-02-16
    上海
  • 本文字数:25687 字

    阅读完需:约 84 分钟

使用 Ingest Pipeline 在 Elasticsearch 中对数据进行预处理

Ingest pipeline 允许文档在被索引之前对数据进行预处理,将数据加工处理成我们需要的格式。例如,可以使用 ingest pipeline 添加或者删除字段,转换类型,解析内容等等。Pipeline 由一组处理器 Processor 构成,每个处理器依次运行,对传入的文档进行特定的更改。Ingest pipeline 和 Logstash 中的 filter 作用相似,并且更加轻量和易于调试。



要使用 ingest pipeline,集群中必须至少有一个具有 ingest 角色的节点。对于大量摄取负载,建议设置专用的 ingest 节点,要创建专用的 ingest 节点,请设置:


node.roles: [ ingest ]
复制代码

1 Ingest Pipeline 的基本用法

1.1 创建和使用 Ingest Pipeline

接下来介绍一下 ingest pipeline 的创建与使用,如下所示,使用 ingest API 创建一个名为 my-pipeline 的 ingest pipeline,在 processors 参数中指定了两个处理器,set 处理器为文档添加一个新的字段 location,设置值为 China;lowercase 处理器将 name 字段的所有字母转换为小写。


PUT _ingest/pipeline/my-pipeline{  "description": "My first Ingest Pipeline",  "processors": [    {      "set": {        "description": "Add a new field",        "field": "location",        "value": "China"      }    },    {      "lowercase": {        "description": "Lowercase name",        "field": "name"      }    }  ]}
复制代码


然后往索引 my-index 中写入一条数据,通过 pipeline 参数指定使用刚刚创建的 my-pipeline


PUT my-index/_doc/1?pipeline=my-pipeline{  "name": "Tom",  "age": 18}
复制代码


查看 id 为 1 的文档,可以看到 name 字段由 Tom 转换为 tom,并且新增了 location 字段,说明 my-pipeline 管道成功处理了摄入的数据。


GET my-index/_doc/1
# 返回结果{ "_index" : "my-index", "_type" : "_doc", "_id" : "1", "_version" : 1, "_seq_no" : 0, "_primary_term" : 1, "found" : true, "_source" : { "name" : "tom", "location" : "China", "age" : 18 }}
复制代码

1.2 使用 Simulate API 测试 Pipeline

为了让开发者更好地了解和使用 pipeline 中的处理器,Elasticsearch 提供了 simulate API 接口,方便我们对 pipeline 进行测试。如下所示,我们对 1.1 创建和使用 Ingest Pipeline 章节中创建的 my-pipeline 进行测试,在 docs 列表中我们可以填写多个原始文档。


POST _ingest/pipeline/my-pipeline/_simulate{  "docs": [    {      "_source": {        "name": "Tom",        "age": 18      }    }  ]}
复制代码


返回结果如下,可以看到模拟的结果和实际创建的文档一致,只不过 simulate API 并不会真正地创建这个文档。


{  "docs" : [    {      "doc" : {        "_index" : "_index",        "_type" : "_doc",        "_id" : "_id",        "_source" : {          "name" : "tom",          "location" : "China",          "age" : 18        },        "_ingest" : {          "timestamp" : "2022-03-03T14:04:15.941884826Z"        }      }    }  ]}
复制代码


除了在请求路径中指定 pipeline,我们还可以在请求体中定义 pipeline 进行模拟,这样就不用预先创建好 pipeline,而是等到测试成功后再去创建 pipeline。


POST _ingest/pipeline/_simulate{  "pipeline": {    "processors": [      {        "set": {          "description": "Add a new field",          "field": "location",          "value": "China"        }      },      {        "lowercase": {          "description": "Lowercase name",          "field": "name"        }      }    ]  },  "docs": [    {      "_source": {        "name": "Tom",        "age": 18      }    }  ]}
复制代码

1.3 异常处理

当我们使用 pipeline 处理一个文档的时候,有时并不是所有的文档都很规范,这个时候可能就会出现文档不能被正确解析或者发生异常的情况,此时 Elasticsearch 会返回给客户端一个错误的信息,表明文档不能被正确地处理。pipeline 中的处理器(processor)按照顺序依次执行,默认情况下,当处理器发生错误或者异常时,将会停止后续的处理。



在 ingest pipeline 中,异常处理可以分为 3 种情况:


  • 在处理器中设置 ignore_failure: true,当该处理器发生异常时,允许忽略异常,继续执行后续的处理器。

  • 通过 on_failure 参数定义发生异常时执行的处理器列表,该参数可以在 processor 级别中定义,也可以在 pipeline 级别中定义。

  • 使用 fail 处理器主动抛出异常。


下面将会分别对上述 3 种情况进行演示,首先模拟 2 个异常:


  • convert 处理器将 id 字段转换为 long 类型,由于传入文档的 id 字段值设置为 S123456,无法转换成 long 类型的数字,会产生 number_format_exception 的异常。

  • date 处理器解析 timestamp 字段的日期格式,formats 参数要求输入的格式是 yyyy-MM-dd HH:mm:ss,例如 2022-03-03 15:22:11,解析出日期对应的年月日信息,以 yyyy/MM/dd 的格式输出到 date 字段中,例如 2022/03/03。由于传入文档的 timestamp 字段的格式是 20220303 15:22:11,并不满足 formats 参数要求的日期格式,因此会产生 date_time_parse_exception 的异常。


执行以下 pipeline 测试语句,在请求路径中加上 verbose 可以看到每个处理器的执行情况。


POST _ingest/pipeline/_simulate?verbose{  "pipeline": {    "processors": [      {        "convert": {          "field": "id",          "type": "long"        }      },      {        "date": {          "field": "timestamp", // 解析的字段          "formats": [            "yyyy-MM-dd HH:mm:ss" // 解析的格式          ],          "output_format": "yyyy/MM/dd",  // 输出的格式          "target_field": "date"  // 输出的字段        }      }    ]  },  "docs": [    {      "_source": {        "id": "S123456",        "timestamp": "20220303 15:22:11",        "message": "User login successfully"      }    }  ]}
复制代码


返回结果如下,尽管我们人为制造了 2 个异常,但是只看到了 convert 处理器的异常报错,这是因为当处理器发生错误或者异常时,将会停止后续的处理,直接向客户端返回错误信息。


{  "docs" : [    {      "processor_results" : [        {          "processor_type" : "convert",          "status" : "error",          "error" : {            "root_cause" : [              {                "type" : "illegal_argument_exception",                "reason" : "unable to convert [S123456] to long"              }            ],            "type" : "illegal_argument_exception",            "reason" : "unable to convert [S123456] to long",            "caused_by" : {              "type" : "number_format_exception",              "reason" : "For input string: \"S123456\""            }          }        }      ]    }  ]}
复制代码

1.3.1 ignore_failure 忽略异常

在处理器中设置 ignore_failure 参数为 true,当该处理器发生异常时,允许忽略异常,继续执行后续的处理器。


POST _ingest/pipeline/_simulate?verbose{  "pipeline": {    "processors": [      {        "convert": {          "field": "id",          "type": "long",          "ignore_failure": true // 忽略异常        }      },      {        "date": {          "field": "timestamp",          "formats": [            "yyyy-MM-dd HH:mm:ss"          ],          "output_format": "yyyy/MM/dd",          "target_field": "date"        }      }    ]  },  "docs": [    {      "_source": {        "id": "S123456",        "timestamp": "2022/03/03 15:22:11",        "message": "User login successfully"      }    }  ]}
复制代码


这次在返回结果中可以看到有 2 个异常信息,其中 convert 处理器的 status 的值为 error_ignored,表示该异常被忽略了,在 doc 中可以看到该处理器处理完毕后的结果,可以看到 id 字段的内容保留不变。接着 pipeline 继续往后执行,当执行到 date 处理器时,再次发生异常,由于 date 处理器中未对异常进行处理,此时向客户端返回异常信息。


{  "docs" : [    {      "processor_results" : [        {          "processor_type" : "convert",            "status" : "error_ignored", // 第 1 个异常,忽略异常          "ignored_error" : {             "error" : {                "root_cause" : [                {                  "type" : "illegal_argument_exception",                  "reason" : "unable to convert [S123456] to long"                }              ],              "type" : "illegal_argument_exception",              "reason" : "unable to convert [S123456] to long",              "caused_by" : {                "type" : "number_format_exception",                "reason" : "For input string: \"S123456\""              }            }          },          "doc" : {            "_index" : "_index",            "_type" : "_doc",            "_id" : "_id",            "_source" : {              "id" : "S123456",  // 跳过 convert 处理器对 id 字段的处理              "message" : "User login successfully",              "timestamp" : "2022/03/03 15:22:11"            },            "_ingest" : {              "pipeline" : "_simulate_pipeline",              "timestamp" : "2022-03-04T02:48:13.562353005Z"            }          }        },        {          "processor_type" : "date",           "status" : "error",  // 第 2 个异常          "error" : {            "root_cause" : [              {                "type" : "illegal_argument_exception",                "reason" : "unable to parse date [2022/03/03 15:22:11]"              }            ],            "type" : "illegal_argument_exception",            "reason" : "unable to parse date [2022/03/03 15:22:11]",            "caused_by" : {              "type" : "illegal_argument_exception",              "reason" : "failed to parse date field [2022/03/03 15:22:11] with format [yyyy-MM-dd HH:mm:ss]",              "caused_by" : {                "type" : "date_time_parse_exception",                "reason" : "Text '2022/03/03 15:22:11' could not be parsed at index 4"              }            }          }        }      ]    }  ]}
复制代码

1.3.2 on_failure 处理异常

使用 on_failure 参数可以定义发生异常时执行的处理器列表,该参数允许在 processor 和 pipeline 级别中定义。在 pipeline 级别定义时,on_failure 捕获整个 pipeline 发生的任何异常,当产生异常时直接执行 on_failure 中定义的处理器列表,不会再执行后续的处理器。



在 processor 级别定义时,on_failure 参数可以针对单个处理器进行异常处理,会继续执行后续的处理器。



on_failure 参数可以同时在 pipeline 和 processor 中定义,这两者并不冲突,比较推荐的做法是,针对某些处理器设置 processor 级别的 on_failure 处理规则,另外设置 pipeline 级别的 on_failure 处理规则作为一条兜底的规则,当 processor 级别的 on_failure 处理规则也发生异常时或者没有设置异常处理的处理器发生异常时,就可以应用这条兜底的规则,这样做的好处就是可以尽可能地保证我们的 ingest pipeline 的健壮性。


如下所示,在 pipeline 级别设置了 on_failure 的处理规则,注意这里的 on_failure 参数和 processors 参数是处于同一层级的。当发生异常时, on_failure 会执行里面的 set 处理器,将索引名改为 failure-index,该索引专门用于记录 pipeline 处理异常的文档。之后我们就可以在 failure-index 索引中去查看哪些文档在预处理时发生了异常,方便后续实施相应的补救措施。


PUT _ingest/pipeline/failure-test-pipeline{  "processors": [    {      "convert": {        "field": "id",        "type": "long"      }    },    {      "date": {        "field": "timestamp",        "formats": [          "yyyy-MM-dd HH:mm:ss"        ],        "output_format": "yyyy/MM/dd",        "target_field": "date"      }    }  ],  "on_failure": [ // 发生异常时执行的处理器列表    {      "set": {        "field": "_index", // 通过 _index 元数据字段,可以改变写入的索引        "value": "failure-index"      }    }  ]}
复制代码


然后往 my-index 索引中插入一条有错误的文档,将文档 _id 设置为 1。从返回结果来看,并没有异常报错,文档成功写入了。但是仔细观察可以发现,文档并没有写入 my-index 索引,而是写入了我们记录异常的索引 failure-index。


PUT my-index/_doc/1?pipeline=failure-test-pipeline{  "id": "S123456",  "timestamp": "2022/03/03 15:22:11",  "message": "User login successfully"}
# 返回结果{ "_index" : "failure-index", // 写入了记录异常的索引 "_type" : "_doc", "_id" : "1", "_version" : 1, "result" : "created", "_shards" : { "total" : 2, "successful" : 1, "failed" : 0 }, "_seq_no" : 0, "_primary_term" : 1}
复制代码


查询 my-index 文档,确实没有找到 _id 为 1 的这条文档。


GET my-index/_doc/1
# 返回结果{ "error" : { "root_cause" : [ { "type" : "index_not_found_exception", "reason" : "no such index [my-index]", "resource.type" : "index_expression", "resource.id" : "my-index", "index_uuid" : "_na_", "index" : "my-index" } ], "type" : "index_not_found_exception", "reason" : "no such index [my-index]", "resource.type" : "index_expression", "resource.id" : "my-index", "index_uuid" : "_na_", "index" : "my-index" }, "status" : 404}
复制代码


查询 failure-index 索引可以找到这条处理异常的文档。


GET failure-index/_doc/1
# 返回结果{ "_index" : "failure-index", "_type" : "_doc", "_id" : "1", "_version" : 1, "_seq_no" : 0, "_primary_term" : 1, "found" : true, "_source" : { "id" : "S123456", "message" : "User login successfully", "timestamp" : "2022/03/03 15:22:11" }}
复制代码


对于我们来说,目前 failure-index 索引记录的信息十分有限,根据以上内容我们无法知道是哪个处理器在执行时产生了异常。在 on_failure 中提供了以下 4 个元数据字段方便我们进行故障定位:


  • on_failure_pipeline:产生异常的 pipeline 类型的处理器中引用的 pipeline。ingest pipeline 中有一个 pipeline 类型的处理器,该处理器也可以指定使用其他的 pipeline,这里注意区分 pipeline 类型的处理器和 pipeline 管道。

  • on_failure_message:报错的内容。

  • on_failure_processor_type:产生异常的处理器的标签,标签可以在处理器中通过 tag 参数指定。当 pipeline 中使用了多个相同类型的处理器时,根据指定的标签可以方便我们进行区分。

  • on_failure_processor_tag:产生异常的处理器的类型。


如下所示,我们在 on_failure 参数新增了一个 set 处理器,将错误信息写入 failure-index 的 failure 字段中。


PUT _ingest/pipeline/failure-test-pipeline{  "processors": [    {      "convert": {        "tag": "my-index-convert", // 设置处理器的标签,方便定位问题        "field": "id",        "type": "long"      }    },    {      "date": {        "tag": "my-index-date", // 设置处理器的标签,方便定位问题        "field": "timestamp",        "formats": [          "yyyy-MM-dd HH:mm:ss"        ],        "output_format": "yyyy/MM/dd",        "target_field": "date"      }    }  ],  "on_failure": [    {      "set": {        "field": "_index",        "value": "failure-index"      }    },    {      "set": {        "field": "failure",        "value": {          "on_failure_pipeline": "{{ _ingest.on_failure_pipeline }}",          "on_failure_message": "{{_ingest.on_failure_message}}",          "on_failure_processor_type": "{{_ingest.on_failure_processor_type}}",          "on_failure_processor_tag": "{{ _ingest.on_failure_processor_tag }}"        }      }    }  ]}
复制代码


然后往 my-index 索引中插入一条有错误的文档,将文档 _id 设置为 2。


PUT my-index/_doc/2?pipeline=failure-test-pipeline{  "id": "S123456",  "timestamp": "2022/03/03 15:22:11",  "message": "User login successfully"}
复制代码


查看 failure-index 索引记录的错误信息,可以得知打了 my-index-convert 标签的 convert 类型的处理器在处理 S123456 字符串时引发了异常。细心的同学可能会注意到, 在返回结果中 on_failure_pipeline 的内容为空,这是由于异常并不是由 pipeline 类型的处理器产生的,所以这里的结果是空值。如果只是想获取客户端直接调用的 ingest pipeline,那么可以通过 _ingest.pipeline 来获取。


{  "_index" : "failure-index",  "_type" : "_doc",  "_id" : "2",  "_version" : 1,  "_seq_no" : 1,  "_primary_term" : 1,  "found" : true,  "_source" : {    "failure" : {      "on_failure_pipeline" : "", // 产生异常的 pipeline 类型的处理器中引用的 pipeline      "on_failure_message" : "For input string: \\\"S123456\\\"", // 报错的内容      "on_failure_processor_tag" : "my-index-convert", // 产生异常的处理器的标签      "on_failure_processor_type" : "convert" // 产生异常的处理器的类型    },    "id" : "S123456",    "message" : "User login successfully",    "timestamp" : "2022/03/03 15:22:11"  }}
复制代码


上面的示例介绍了 on_failure 参数在 pipeline 级别的处理,现在介绍下 on_failure 参数如何在 processor 级别进行处理。如下所示,在 convert 和 date 处理器中分别通过 on_failure 参数设置了发生异常时执行的处理器列表:当 convert 进行类型转换发生异常时,将当前时间的毫秒数设置 id 字段的值;当 date 处理器解析时间发生异常时,使用 ingest 摄取时间的日期戳作为 date 字段的值。


PUT _ingest/pipeline/failure-test-pipeline{  "processors": [    {      "convert": {        "field": "id",        "type": "long",        "on_failure": [ // 发生异常时将当前时间的毫秒数设置 id 字段的值          {            "script": {                "source": """                 long timeNow = Calendar.getInstance().getTimeInMillis();                 ctx.id = timeNow;              """            }          }        ]      }    },    {      "date": {        "field": "timestamp",        "formats": [          "yyyy-MM-dd HH:mm:ss"        ],        "output_format": "yyyy/MM/dd",        "target_field": "date",        "on_failure": [  // 发生异常时使用 ingest 摄取时间的日期戳作为 date 字段的值          {            "set": {              "field": "date",              "value": "{{_ingest.timestamp}}"            }          },          {            "date": {              "field": "date",              "formats": [                "yyyy-MM-dd'T'HH:mm:ss.SSSZ"              ],              "output_format": "yyyy/MM/dd",              "target_field": "date"            }          }        ]      }    }  ]}
复制代码


然后往 my-index 索引中插入一条有错误的文档,将文档 _id 设置为 3。文档正常写入 my-index 中,没有返回报错信息。


PUT my-index/_doc/3?pipeline=failure-test-pipeline{  "id": "S123456",  "timestamp": "2022/03/03 15:22:11",  "message": "User login successfully"}
# 返回结果{ "_index" : "my-index", "_type" : "_doc", "_id" : "3", "_version" : 1, "result" : "created", "_shards" : { "total" : 2, "successful" : 1, "failed" : 0 }, "_seq_no" : 0, "_primary_term" : 1}
复制代码


获取 my-index 索引中 _id 为 3 的文档,可以看到 id 字段的值并不是传入的原始文档中的 S123456,而是当前时间对应的毫秒值;date 字段的值被设置为了 ingest 摄取时间的日期。


GET my-index/_doc/3
# 返回结果{ "_index" : "my-index", "_type" : "_doc", "_id" : "3", "_version" : 1, "_seq_no" : 0, "_primary_term" : 1, "found" : true, "_source" : { "date" : "2022/03/03", "id" : 1646349731000, "message" : "User login successfully", "timestamp" : "2022/03/03 15:22:11" }}
复制代码

1.3.3 fail 主动抛出异常

和 ignore_failure, on_failure 两种处理异常的方式不同,使用 fail 处理器可以基于某些条件主动抛出异常,当你想要主动让 pipeline 失败并且返回特定的报错信息给请求者时,可以使用这种方式。如下所示,当 tags 字段中不包含 production 时,fail 处理器会主动抛出异常,在 message 参数中可以自定义相应的报错信息。


POST _ingest/pipeline/_simulate{  "pipeline": {    "processors": [      {        "fail": {          "if": "ctx.tags.contains('production') != true",          "message": "The production tag is not present, found tags: {{{tags}}}"        }      }    ]  },  "docs": [    {      "_source": {        "tags": ["development"]      }    }  ]}
# 返回结果{ "docs" : [ { "error" : { "root_cause" : [ { "type" : "fail_processor_exception", // 自定义的报错信息 "reason" : "The production tag is not present, found tags: {0=development}" } ], "type" : "fail_processor_exception", "reason" : "The production tag is not present, found tags: {0=development}" } } ]}
复制代码

1.4 执行条件判断

每种类型的处理器中都支持 if 参数判断执行处理器的条件,在 if 参数中使用 painless 脚本进行逻辑判断,当 if 的判断结果为 true 时,相应的处理器才会执行。如下所示,创建了 if-test-pipeline,我们只想日志级别是 error 的消息,当 level 字段的值是 notice 时,丢弃该文档。


PUT _ingest/pipeline/if-test-pipeline{  "processors": [    {      "drop": {        "description": "Drop documents with level of notice",        "if": "ctx.level == 'notice'"      }    }  ]}
复制代码


然后往 log-index 索引中写入两条文档,指定使用 if-test-pipeline,其中一条文档的 level 值等于 notice,另一条的 level 值等于 error。


POST log-index/_doc?pipeline=if-test-pipeline{  "level": "notice",  "message": "this is a notice log"}POST log-index/_doc?pipeline=if-test-pipeline{  "level": "error",  "message": "this is a error log"}
复制代码


查询 log-index 索引,只返回了 1 条文档,level 等于 notice 的文档被丢弃了。


GET log-index/_search
# 返回结果{ "took" : 1, "timed_out" : false, "_shards" : { "total" : 1, "successful" : 1, "skipped" : 0, "failed" : 0 }, "hits" : { "total" : { "value" : 1, "relation" : "eq" }, "max_score" : 1.0, "hits" : [ { "_index" : "log-index", "_type" : "_doc", "_id" : "fV9ET38BKRZVqZj9X8yC", "_score" : 1.0, "_source" : { "level" : "error", "message" : "this is a error log" } } ] }}
复制代码


接下来介绍一种高级的用法,将一个 pipeline 作为多个不同的索引或者数据流默认的 pipeline,在这个 pipeline 中创建多个 pipeline 类型的处理器,每个处理器根据传入的文档选择后台真正要执行的 pipeline。这样做的好处就是,如果要更改后台使用的 pipeline,只需要修改默认的 pipeline 中引用的 pipeline 即可,客户端的代码或者索引中的设置无需修改,可以做到业务无感知的切换。如下所示,先创建两个 pipeline,其中 httpd_pipeline 用于处理 http 相关的日志,syslog_pipeline 用于处理 syslog 相关的日志。


PUT _ingest/pipeline/httpd_pipeline{  "processors": [    {      "set": {        "field": "message",        "value": "this is a apache_httpd log"      }    }  ]}
PUT _ingest/pipeline/syslog_pipeline{ "processors": [ { "set": { "field": "message", "value": "this is a syslog log" } } ]}
复制代码


接着创建一个 default_pipeline,使用 if 参数进行判断,当 service 字段的值等于 apache_httpd 时,执行 httpd_pipeline,当 service 字段的值等于 syslog 时,执行 syslog_pipeline。


PUT _ingest/pipeline/default_pipeline{  "processors": [    {      "pipeline": {        "description": "If 'service' is 'apache_httpd', use 'httpd_pipeline'",        "if": "ctx.service == 'apache_httpd'",        "name": "httpd_pipeline"      }    },    {      "pipeline": {        "description": "If 'service' is 'syslog', use 'syslog_pipeline'",        "if": "ctx.service == 'syslog'",        "name": "syslog_pipeline"      }    }  ]}
复制代码


使用 simulate API 进行验证,可以看到由于传入的文档的 service 字段的值是 syslog,因此这条文档被交给 syslog_pipeline 进行处理。


POST _ingest/pipeline/default_pipeline/_simulate{  "docs": [    {      "_source": {        "service": "syslog"      }    }  ]}# 返回结果{  "docs" : [    {      "doc" : {        "_index" : "_index",        "_type" : "_doc",        "_id" : "_id",        "_source" : {          "message" : "this is a syslog log", // syslog_pipeline 添加的内容          "service" : "syslog"        },        "_ingest" : {          "timestamp" : "2022-03-04T07:18:53.531846541Z"        }      }    }  ]}
复制代码

2 Processor 处理器

下表列出了 Elasticsearch 所有 processor 处理器的类型,并且根据各个处理器的用途作了相应的分类。下面的小节中仅会演示说明一些常用的处理器,未介绍到的部分读者可以自行查阅官方文档。


2.1 Lowercase & Uppercase

lowercase 处理器可以将字符串转换为其等效的小写字母。如果该字段是一个字符串数组,则该数组的所有成员都将被转换。uppercase 处理器和 lowercase 相反,将字符串转换为大写字母。如下所示,使用 lowercase 处理器将 name 字段转换为小写字母。


POST _ingest/pipeline/_simulate{  "pipeline": {    "processors": [      {        "lowercase": {          "field": "name"        }      }    ]  },  "docs": [    {      "_source": {        "name": "Tom"      }    }  ]}
# 返回结果{ "docs" : [ { "doc" : { "_index" : "_index", "_type" : "_doc", "_id" : "_id", "_source" : { "name" : "tom" }, "_ingest" : { "timestamp" : "2022-02-27T10:43:11.718792423Z" } } } ]}
复制代码

2.2 Split

split 处理器可以根据指定的分隔符,将字符串拆分为数组。如下所示,以 _ 符号作为分隔符,将 num 字段拆分为数组。


POST _ingest/pipeline/_simulate{  "pipeline": {    "processors": [      {        "split": {          "field": "num",          "separator": "_"        }      }    ]  },  "docs": [    {      "_source": {        "num": "111_222_333_444"      }    }  ]}
# 返回结果{ "docs" : [ { "doc" : { "_index" : "_index", "_type" : "_doc", "_id" : "_id", "_source" : { "num" : [ "111", "222", "333", "444" ] }, "_ingest" : { "timestamp" : "2022-02-27T11:10:25.249883405Z" } } } ]}
复制代码

2.3 Trim

trim 处理器可以去掉字符串头尾的空格。如下所示,使用 trim 处理器去掉 message 字段头尾的空格。


POST _ingest/pipeline/_simulate{  "pipeline": {    "processors": [      {        "trim": {          "field": "message"        }      }    ]  },  "docs": [    {      "_source": {        "message": "    Elasticsearch is the distributed search and analytics engine    "      }    }  ]}
# 返回结果{ "docs" : [ { "doc" : { "_index" : "_index", "_type" : "_doc", "_id" : "_id", "_source" : { "message" : "Elasticsearch is the distributed search and analytics engine" }, "_ingest" : { "timestamp" : "2022-02-27T11:12:26.952402786Z" } } } ]}
复制代码

2.4 Join

join 处理器可以将数组中的每个元素拼接成单个字符串。如下所示,使用 _ 符号作为分隔符,将 animal 字段中的元素拼接成单个字符串。


POST _ingest/pipeline/_simulate{  "pipeline": {    "processors": [      {        "join": {          "field": "animal",          "separator": "-"        }      }    ]  },  "docs": [    {      "_source": {        "animal": ["dog", "cat", "monkey"]      }    }  ]}
# 返回结果{ "docs" : [ { "doc" : { "_index" : "_index", "_type" : "_doc", "_id" : "_id", "_source" : { "animal" : "dog-cat-monkey" }, "_ingest" : { "timestamp" : "2022-02-27T10:33:39.63520118Z" } } } ]}
复制代码

2.5 Foreach

使用 foreach 处理器可以遍历数组,对其中的每个元素进行处理,使用 processor 参数指定一个处理器来处理数组中元素。在 foreach 处理器内引用的处理通过 _ingest._value 键来获取数组中每个元素的值。如下所示,将 values 字段中的每个元素转换为大写字母。


POST _ingest/pipeline/_simulate{  "pipeline": {    "processors": [      {        "foreach": {          "field": "values",          "processor": {            "uppercase": {              "field": "_ingest._value"            }          }        }      }    ]  },  "docs": [    {      "_source": {         "values" : ["foo", "bar", "baz"]      }    }  ]}

# 返回结果{ "docs" : [ { "doc" : { "_index" : "_index", "_type" : "_doc", "_id" : "_id", "_source" : { "values" : [ "FOO", "BAR", "BAZ" ] }, "_ingest" : { "_value" : null, "timestamp" : "2022-02-27T10:06:44.235660464Z" } } } ]}
复制代码

2.6 KV

kv 处理器可以以键值对的方式提取字段。如下所示,以空格作为不同键值对的分隔符,以 = 拆分每组键值对的键和值。


POST _ingest/pipeline/_simulate{  "pipeline": {    "processors": [      {        "kv": {          "field": "message",          "field_split": " ", // 拆分键值对          "value_split": "=" // 拆分键值对的键和值        }      }    ]  },  "docs": [    {      "_source": {        "message": "ip=1.2.3.4 error=REFUSED"      }    }  ]}
# 返回结果{ "docs" : [ { "doc" : { "_index" : "_index", "_type" : "_doc", "_id" : "_id", "_source" : { "message" : "ip=1.2.3.4 error=REFUSED", "error" : "REFUSED", "ip" : "1.2.3.4" }, "_ingest" : { "timestamp" : "2022-02-27T10:40:31.072140367Z" } } } ]}
复制代码

2.7 CSV

csv 处理器会将字段中的内容看作 csv 文本的一行,根据 separator 参数指定的分隔符,将拆分后的值赋值给 target_fields 列表中定义的字段。如下所示,将 person 字段按照 | 符号进行拆分,依次赋值给 name, age, country 字段。


POST _ingest/pipeline/_simulate{  "pipeline": {    "processors": [      {        "csv": {          "field": "person",          "target_fields": [ // 指定每列的字段值            "name",            "age",            "country"          ],          "separator": "|" // 字段间的分隔符        }      }    ]  },  "docs": [    {      "_source": {        "person": "zhangsan|18|china"      }    }  ]}
# 返回结果{ "docs" : [ { "doc" : { "_index" : "_index", "_type" : "_doc", "_id" : "_id", "_source" : { "country" : "china", "person" : "zhangsan|18|china", "name" : "zhangsan", "age" : "18" }, "_ingest" : { "timestamp" : "2022-02-24T09:39:48.708832221Z" } } } ]}
复制代码

2.8 Grok

grok 处理器可以使用正则表达式来提取字段,并且内置了许多常用的表达式,可以直接通过表达式别名进行使用。可以使用以下命令获取所有 grok 内置的表达式。


GET _ingest/processor/grok?s
复制代码


返回结果如下,例如我们想匹配 IP 地址就可以直接使用 %{IP} 进行匹配,想匹配 MAC 地址可以使用 %{MAC} 进行匹配。表达式别名还可以引用其他的表达式别名,比如表达式别名 IP 就引用了 IPV4 和 IPV6 两个别名。



接下来我们尝试使用 grok 处理器解析一条日志。%{<expression>:<field>} 表示将表达式匹配的值赋值到指定的 field 字段中,表达式可以是我们自定义的表达式,也可以是表达式别名;%{<expression>} 表示只匹配不赋值。


55.3.244.1 GET /index.html 15824 0.043"
复制代码


在上面的日志中:


  • 55.3.244.2 是客户端的 IP 地址,使用 %{IP:client} 匹配 IP 地址,赋值到 client 字段中;

  • GET 是 HTTP 的请求方法,使用 %{WORD:method} 匹配数字和字母,赋值到 method 字段中;

  • /index.html 是请求的 URI 路径,使用 %{URIPATHPARAM:request} 匹配 URI 路径和参数,赋值到 request 字段中;

  • 15824 是请求的字节大小,使用 %{NUMBER:bytes:int} 匹配数字,赋值到 bytes 字段中,并且将字段设置为 int 类型;

  • 0.043 是请求的处理时间,使用 %{NUMBER:duration:double} 匹配数字,赋值到 duration 字段中,并且将字段设置为 double 类型。


上面用到的 IP, WORD, URIPATHPARAM, NUMBER 表达式都是 grok 内置的表达式别名,可以直接拿来使用。


POST _ingest/pipeline/_simulate{  "pipeline": {    "processors": [      {        "grok": {          "field": "message",          "patterns": ["%{IP:client} %{WORD:method} %{URIPATHPARAM:request} %{NUMBER:bytes:int} %{NUMBER:duration:double}"]        }      }    ]  },  "docs":[    {      "_source": {        "message": "55.3.244.1 GET /index.html 15824 0.043"      }    }  ]}
# 返回结果{ "docs" : [ { "doc" : { "_index" : "_index", "_type" : "_doc", "_id" : "_id", "_source" : { "duration" : 0.043, "request" : "/index.html", "method" : "GET", "bytes" : 15824, "client" : "55.3.244.1", "message" : "55.3.244.1 GET /index.html 15824 0.043" }, "_ingest" : { "timestamp" : "2022-03-01T03:33:57.627169176Z" } } } ]}
复制代码


除了使用 grok 内置的表达式以外,grok 处理器也允许我们自定义表达式。可以在 pattern_definitions 参数中进行设置,其中键是我们自定义表达式的别名,值是具体的正则表达式。如下所示,我们定义了两个表达式别名:FAVORITE_DOG 使用正则表达式 \w+, 匹配数字和字母,注意这里需要额外使用一个 \ 来进行转义;RGB 可以匹配 RED,GREEN,BLUE 3 种颜色。


POST _ingest/pipeline/_simulate{  "pipeline": {    "processors": [      {        "grok": {          "field": "message",          "patterns": [            "my %{FAVORITE_DOG:dog} is colored %{RGB:color}"          ],          "pattern_definitions": { // 自定义表达式            "FAVORITE_DOG": "\\w+",  // 匹配数字和字母            "RGB": "RED|GREEN|BLUE"  // 匹配 3 个颜色          }        }      }    ]  },  "docs": [    {      "_source": {        "message": "my beagle is colored BLUE"      }    }  ]}
# 返回结果{ "docs" : [ { "doc" : { "_index" : "_index", "_type" : "_doc", "_id" : "_id", "_source" : { "message" : "my beagle is colored BLUE", "color" : "BLUE", "dog" : "beagle" }, "_ingest" : { "timestamp" : "2022-03-01T03:34:33.933398405Z" } } } ]}
复制代码


有时候一种匹配规则可能难以匹配所有的内容,我们可以在正则表达式中通过或的逻辑进行判断,但是这样会使得写出来的表达式难以阅读。这里还有一种更好的方法,在 grok 处理器中,patterns 参数允许填写多个表达式,这样我们的匹配规则看上去就一目了然,处理器会使用最先匹配到的表达式。如下所示,我们设置了 FAVORITE_DOG 和 FAVORITE_CAT 两个表达式都用于解析 pet 字段,如果想要知道是哪个表达式匹配了内容,可以设置参数 "trace_match": true,这样在返回结果的 _grok_match_index 字段中可以看到匹配了哪个表达式,其中 1 表示匹配了第二个表达式。


POST _ingest/pipeline/_simulate{  "pipeline": {    "description": "parse multiple patterns",    "processors": [      {        "grok": {          "field": "message",          "patterns": [  // patterns 是数组, 可以填写多个表达式            "%{FAVORITE_DOG:pet}",            "%{FAVORITE_CAT:pet}"          ],          "pattern_definitions": {            "FAVORITE_DOG": "beagle",            "FAVORITE_CAT": "burmese"          },          "trace_match": true // 显示匹配了哪一个表达式, 第一个从 0 开始        }      }    ]  },  "docs": [    {      "_source": {        "message": "I love burmese cats!"      }    }  ]}# 返回结果{  "docs" : [    {      "doc" : {        "_index" : "_index",        "_type" : "_doc",        "_id" : "_id",        "_source" : {          "message" : "I love burmese cats!",          "pet" : "burmese"        },        "_ingest" : {          "_grok_match_index" : "1", // 匹配了第 2 个表达式          "timestamp" : "2022-03-01T03:35:05.490483581Z"        }      }    }  ]}
复制代码


在 Kibana 的界面上还提供了 Grok Debugger 方便我们调试 grok 表达式。点击 Management -> Dev Tools -> Grok Gebugger 进入调试界面。



从上图可以看到,调试界面分为以下 4 个部分:


  • Sample Data: 填写测试的文本。

  • Grok Pattern:填写 grok 表达式,相当于 grok 处理器中 patterns 定义的内容。

  • Custom Patterns:自定义表达式,相当于 grok 处理器中 pattern_definitions 定义的内容。在 Custom Patterns 中每行表示一个自定义表达式,最左边的字符串表示我们自定义的表达式别名,右边内容是表达式的内容,不需要进行符号转义。

  • Structured Data:处理完的结果。


我们将示例中的内容按照上面的说明填写到相应的位置,点击 Simulate,就可以看到解析完成后的结构化数据了。


2.9 Dissect

dissect 和 grok 处理器类似,都是用于从单个文本字段中提取结构化字段。与 grok 相比,dissect 最大的优势就是简单和快速,dissect 在解析时不使用正则表达式,这使得 dissect 的语法更加简单,并且执行速度比 grok 更快。当然 grok 也有自己的独到之处,grok 可以同时使用多个 patterns 来对内容来进行匹配,这是 dissect 所不具备的能力。接下来首先介绍一下 dissect 处理器简单的使用方法,如下所示,我们要对一行日志内容进行解析,%{<field>} 表示将匹配到的字符串作为 field 字段的值。


POST _ingest/pipeline/_simulate{  "pipeline": {    "processors": [      {        "dissect": {          "field": "message",          "pattern": "%{clientip} %{ident} %{auth} [%{@timestamp}] \"%{verb} %{request} HTTP/%{httpversion}\" %{status} %{size}"        }      }    ]  },  "docs": [    {      "_source": {        "message": "1.2.3.4 - - [30/Apr/1998:22:00:52 +0000] \"GET /english/venues/cities/images/montpellier/18.gif HTTP/1.0\" 200 3171"      }    }  ]}
# 返回结果{ "docs" : [ { "doc" : { "_index" : "_index", "_type" : "_doc", "_id" : "_id", "_source" : { "request" : "/english/venues/cities/images/montpellier/18.gif", "auth" : "-", "ident" : "-", "verb" : "GET", "message" : """1.2.3.4 - - [30/Apr/1998:22:00:52 +0000] "GET /english/venues/cities/images/montpellier/18.gif HTTP/1.0" 200 3171""", "@timestamp" : "30/Apr/1998:22:00:52 +0000", "size" : "3171", "clientip" : "1.2.3.4", "httpversion" : "1.0", "status" : "200" }, "_ingest" : { "timestamp" : "2022-03-01T06:37:23.791866312Z" } } } ]}
复制代码


在 dissect 中可以使用修饰符改变默认的匹配规则,例如可以指定 dissect 忽略某些字段、拼接多个字符等等。dissect 的修饰符说明如下表所示。



dissect 默认的匹配算法非常严格,要求 pattern 中的所有字符都与源字符串完全匹配。例如 %{a} %{b} 只能匹配“字符串 1 字符串 2”(中间 1 个空格),将无法匹配“字符串 1     字符串 2”(中间 5 个空格)。要处理这种情况就可以使用 -> 修饰符跳过箭头右边重复的字符,例如 %{a->} %{b} 就可以跳过字符串 1 和字符串 2 中间的多个空格,只对空格匹配一次。要跳过的字符我们可以自由设置,如下所示,使用 -> 修饰符跳过重复的 ~ 字符。


POST _ingest/pipeline/_simulate{  "pipeline": {    "processors": [      {        "dissect": {          "field": "message",          "pattern": "%{ts->}~%{level}" // 跳过重复的 ~ 字符        }      }    ]  },  "docs": [    {      "_source": {        "message": "1998-08-10T17:15:42,466~~~~~~~WARN"      }    }  ]}
# 返回结果{ "docs" : [ { "doc" : { "_index" : "_index", "_type" : "_doc", "_id" : "_id", "_source" : { "message" : "1998-08-10T17:15:42,466~~~~~~~WARN", "level" : "WARN", "ts" : "1998-08-10T17:15:42,466" }, "_ingest" : { "timestamp" : "2022-03-01T06:38:20.328535452Z" } } } ]}
复制代码


假如我们想将多个匹配的字符拼接为一个字段,可以使用 + 修饰符,append_separator 参数可以指定分隔符, 默认以空格作为分隔符。如下所示,我们将匹配的多个字符串拼接为 name 字段,使用 , 作为分隔符。


POST _ingest/pipeline/_simulate{  "pipeline": {    "processors": [      {        "dissect": {          "field": "message",          "pattern": "%{+name} %{+name} %{+name} %{+name}",          "append_separator": ","        }      }    ]  },  "docs": [    {      "_source": {        "message": "john jacob jingleheimer schmidt"      }    }  ]}
# 返回结果{ "docs" : [ { "doc" : { "_index" : "_index", "_type" : "_doc", "_id" : "_id", "_source" : { "name" : "john,jacob,jingleheimer,schmidt", "message" : "john jacob jingleheimer schmidt" }, "_ingest" : { "timestamp" : "2022-03-02T13:41:40.058126802Z" } } } ]}
复制代码


如果我们想改变字符串拼接的顺序,可以同时使用 +/n 修饰符指定顺序,其中 n 是顺序的数字。如下所示,可以看到返回结果中的 name 字段按照我们指定的顺序拼接。


POST _ingest/pipeline/_simulate{  "pipeline": {    "processors": [      {        "dissect": {          "field": "message",          "pattern": "%{+name/2} %{+name/4} %{+name/3} %{+name/1}",          "append_separator": ","        }      }    ]  },  "docs": [    {      "_source": {        "message": "john jacob jingleheimer schmidt"      }    }  ]}
# 返回结果{ "docs" : [ { "doc" : { "_index" : "_index", "_type" : "_doc", "_id" : "_id", "_source" : { "name" : "schmidt,john,jingleheimer,jacob", "message" : "john jacob jingleheimer schmidt" }, "_ingest" : { "timestamp" : "2022-03-02T13:47:44.332086601Z" } } } ]}
复制代码


前面提到过,dissect 要求 pattern 中的所有字符都与源字符串完全匹配,否则解析将不会成功。如果我们仅仅想让某些字符串在匹配时充当“占位”的角色,并不想让它出现在最终的文档中,那么就可以使用 ? 修饰符来忽略最终结果中的匹配项。除了使用 ? 修饰符以外,还可以用一个空键 %{} 实现相同的效果,但是为了便于阅读,建议还是使用 %{?<field>} 的方式。如下所示,ident 和 auth 字段都不会出现在最终的结果中,仅用于字符串匹配。


POST _ingest/pipeline/_simulate{  "pipeline": {    "processors": [      {        "dissect": {          "field": "message",          "pattern": "%{clientip} %{?ident} %{?auth} [%{@timestamp}]"        }      }    ]  },  "docs": [    {      "_source": {        "message": "1.2.3.4 - - [30/Apr/1998:22:00:52 +0000]"      }    }  ]}
# 返回结果{ "docs" : [ { "doc" : { "_index" : "_index", "_type" : "_doc", "_id" : "_id", "_source" : { "@timestamp" : "30/Apr/1998:22:00:52 +0000", "message" : "1.2.3.4 - - [30/Apr/1998:22:00:52 +0000]", "clientip" : "1.2.3.4" }, "_ingest" : { "timestamp" : "2022-03-02T13:50:56.099402273Z" } } } ]}
复制代码


*& 修饰符可以用于解析包含键值对的内容,其中输出键设置为 * 的值,输出值设置为 & 的值。


POST _ingest/pipeline/_simulate{  "pipeline": {    "processors": [      {        "dissect": {          "field": "message",          "pattern": "[%{ts}] [%{level}] %{*p1}:%{&p1} %{*p2}:%{&p2}"        }      }    ]  },  "docs": [    {      "_source": {        "message": "[2018-08-10T17:15:42,466] [ERR] ip:1.2.3.4 error:REFUSED"      }    }  ]}
# 返回结果{ "docs" : [ { "doc" : { "_index" : "_index", "_type" : "_doc", "_id" : "_id", "_source" : { "level" : "ERR", "ip" : "1.2.3.4", "message" : "[2018-08-10T17:15:42,466] [ERR] ip:1.2.3.4 error:REFUSED", "error" : "REFUSED", "ts" : "2018-08-10T17:15:42,466" }, "_ingest" : { "timestamp" : "2022-03-02T14:00:54.96982616Z" } } } ]}
复制代码

2.10 Rename

rename 处理器用于重命名现有字段。如果该字段不存在或者重命名的字段已存在,则会引发异常。如下所示,将 provider 字段重命名为 cloud.provider。


POST _ingest/pipeline/_simulate{  "pipeline": {    "processors": [      {        "rename": {          "field": "provider",          "target_field": "cloud.provider"        }      }    ]  },  "docs": [    {      "_source": {        "provider": "Aliyun"      }    }  ]}
# 返回结果{ "docs" : [ { "doc" : { "_index" : "_index", "_type" : "_doc", "_id" : "_id", "_source" : { "cloud" : { "provider" : "Aliyun" } }, "_ingest" : { "timestamp" : "2022-02-27T10:57:47.821558199Z" } } } ]}
复制代码

2.11 Remove

remove 处理器用于删除现有字段。如果删除的字段不存在,则会引发异常。如下所示,使用 remove 处理器删除文档中的 name 和 location 字段。


POST _ingest/pipeline/_simulate{  "pipeline": {    "processors": [      {        "remove": {          "field": ["age", "location"]        }      }    ]  },  "docs": [    {      "_source": {        "name": "tom",        "age": 18,        "location": "United States"      }    }  ]}
# 返回结果{ "docs" : [ { "doc" : { "_index" : "_index", "_type" : "_doc", "_id" : "_id", "_source" : { "name" : "tom" }, "_ingest" : { "timestamp" : "2022-02-27T10:56:05.119755281Z" } } } ]}
复制代码

2.12 Set

set 处理器用于为字段赋值,并且在赋值的时候还可以使用 {{{ }}} 符号从其他字段复制值,然后和指定字符串进行拼接。如下所示,将 version 字段的值设置为 2,host.os.name 字段的值为 copy from 字符串拼接 os 字段的结果。


POST _ingest/pipeline/_simulate{  "pipeline": {    "processors": [      {        "set": {          "field": "host.os.name",          "value": "copy from {{{os}}}" // 从 os 字段复制值进行拼接        }      },      {        "set": {          "field": "version",          "value": "2" // 设置静态值        }      }    ]  },  "docs": [    {      "_source": {        "os": "Ubuntu"      }    }  ]}
# 返回结果{ "docs" : [ { "doc" : { "_index" : "_index", "_type" : "_doc", "_id" : "_id", "_source" : { "host" : { "os" : { "name" : "copy from Ubuntu" } }, "os" : "Ubuntu", "version" : "2" }, "_ingest" : { "timestamp" : "2022-02-28T13:39:31.035666829Z" } } } ]}
复制代码

2.13 Script

对于复杂的处理逻辑,如果使用 Elasticseach 其他自带的处理器无法实现,那么可以尝试在 script 处理器中编写脚本进行处理。在 script 处理器中通过 lang 参数可以指定脚本语言,通常我们使用 painless 作为脚本语言,这也是 Elasticsearch 中默认的脚本语言。在 script 处理器中,脚本在 ingest 上下文中运行,我们可以通过 ctx['field'] 或者 ctx.field 语法来访问文档中的字段。如下所示,传入的文档中有一个数字类型的参数 num,我们在脚本中通过 if else 条件语句进行判断,当 num 等于 7 时,将 result 的值设置为 happy;当 num 等于 4 时,将 result 的结果设置为 sad;当 num 是其他值时,将 result 的结果设置为 normal。


POST _ingest/pipeline/_simulate{  "pipeline": {    "processors": [      {        "script": {          "lang": "painless",          "source": """              if(ctx.num == 7){                ctx.result = 'happy'              }else if(ctx.num == 4){                ctx.result = 'sad'              }else {                ctx.result = 'normal'              }          """        }      }    ]  },  "docs": [    {      "_source": {        "num": 7      }    }  ]}
# 返回结果{ "docs" : [ { "doc" : { "_index" : "_index", "_type" : "_doc", "_id" : "_id", "_source" : { "result" : "happy", "num" : 7 }, "_ingest" : { "timestamp" : "2022-03-02T14:20:27.776240111Z" } } } ]}
复制代码

2.14 Drop

drop 处理器可以根据条件删除指定的文档。如下所示,删除 name 字段值为 tom 的文档。


POST _ingest/pipeline/_simulate{  "pipeline": {    "processors": [      {        "drop": {          "if": "ctx.name == 'tom'"        }      }    ]  },  "docs": [    {      "_source": {        "name": "tom",        "age": 18      }    }  ]}

# 返回结果{ "docs" : [ null ]}
复制代码

3 Ingest Pipeline 应用场景

Ingest Pipeline 主要有以下 4 类应用场景:


  • 写入时指定 pipeline,单条写入或者使用 _bulk API 批量写入时都可以使用。

  • 更新时指定 pipeline。

  • 定义索引或者模板时指定 pipeline,有两个相关的参数:

  • index.default_pipeline 参数可以定义 default pipeline(默认执行的 pipeline),当请求中没有指定 pipeline 时执行;

  • index.final_pipeline 参数可以定义 final pipeline(最终执行的 pipeline),在所有 pipeline 执行完后再执行。

  • reindex 时指定 pipeline,在重建索引或者数据迁移时使用。

3.1 写入时指定 Pipeline

首先创建一个名为 lowercase-pipeline 的 pipeline,它的作用是将 name 字段转换为小写字母。


PUT _ingest/pipeline/lowercase-pipeline{  "processors": [    {      "lowercase": {        "field": "name"      }    }  ]}
复制代码


单条写入或者通过 _bulk API 批量写入时都可以通过 pipeline 参数指定使用的 pipeline。


# 写入单条数据时指定 pipelienPOST index-1/_doc?pipeline=lowercase-pipeline{  "name": "Tom",  "age": 20}
# _bulk 写入多条文档时指定 pipelinePUT index-1/_bulk?pipeline=lowercase-pipeline{"index":{ }}{"name":"Peter","age":17}{"index":{}}{"name":"Mary","age":19}
复制代码


查看写入的文档,可以看到所有文档的 name 字段都转换为了小写字母。


GET index-1/_search
# 返回结果{ "_index" : "index-1", "_type" : "_doc", "_id" : "g196X38BKRZVqZj9rsyn", "_score" : 1.0, "_source" : { "name" : "tom", "age" : 20 }},{ "_index" : "index-1", "_type" : "_doc", "_id" : "hF96X38BKRZVqZj9scwO", "_score" : 1.0, "_source" : { "name" : "peter", "age" : 17 }},{ "_index" : "index-1", "_type" : "_doc", "_id" : "hV96X38BKRZVqZj9scwO", "_score" : 1.0, "_source" : { "name" : "mary", "age" : 19 }}
复制代码

3.2 更新时指定 Pipeline

使用 _update_by_query API 可以批量更新索引中的文档,通常会结合 pipeline 来对文档进行更新。以下示例中我们对索引中的所有文档进行更新,也可以在 _update_by_query API 中使用 DSL 语句过滤出需要更新的文档。


# 往源索引中插入数据PUT index-2/_doc/1{  "name": "Smith",  "age": 18}
PUT index-2/_doc/1{ "name": "Mike", "age": 16}
# 使用 update_by_query 进行更新,可以写 DSL 语句过滤出需要更新的文档POST index-2/_update_by_query?pipeline=lowercase-pipeline
复制代码

3.3 定义索引或者模板时指定 Pipeline

在定义索引或者模板时可以使用 index.default_pipeline 参数指定 default pipeline(默认执行的 pipeline),index.final_pipeline 参数指定 final pipeline(最终执行的 pipeline)。default pipeline 与 final pipeline 实际上都是普通的 ingest pipeline,只是和一般的 pipeline 执行时机不同;default pipeline 执行的时机是当前写入请求没有指定 pipeline 时,final pipeline 执行的时机是在所有 pipeline 执行完毕后。



如上图所示,如果当前的写入或者更新请求中指定了 pipeline,则会先执行自定义的 pipeline,当所有的 pipeline 执行完毕后再执行 final pipeline(如果索引显式设置了 index.final_pipeline);如果当前的写入或者更新请求中没有指定 pipeline,并且索引显式设置了 index.default_pipeline 参数时,则会先执行 default pipeline,最后再执行 final pipeline。


为了完成下面的演示,在前面 lowercase-pipeline 的基础上,现在再创建两个 pipeline,其中 uppercase-pipeline 的作用是 name 字段转换为小写字母,set-pipeline 的作用是为文档添加一个 message 字段。


PUT _ingest/pipeline/uppercase-pipeline{  "processors": [    {      "uppercase": {        "field": "name"      }    }  ]}
PUT _ingest/pipeline/set-pipeline{ "processors": [ { "set": { "field": "message", "value": "set by final pipeline" } } ]}
复制代码


接下来创建一个索引 index-3,在 settings 中指定索引的 default_pipeline 为 lowercase-pipeline,final_pipeline 为 set-pipeline。


PUT index-3{  "settings": {    "index": {      "default_pipeline": "lowercase-pipeline", // 默认执行的 pipeline      "final_pipeline": "set-pipeline" // 最终执行的 pipeline    }  }}
复制代码


然后往索引中插入两条文档,其中 _id 为 1 的文档在写入时不指定 pipeline,_id 为 2 的文档在写入时指定使用 uppercase-pipeline。


PUT index-3/_doc/1{  "name": "Lisa",  "age": 18}
# 在写入时指定 pipeline 覆盖 default_pipelinePUT index-3/_doc/2?pipeline=uppercase-pipeline{ "name": "Jerry", "age": 21}
复制代码


查询最终保存的文档,可以看到 final pipeline 始终会执行,2 个文档都添加了 message 字段;由于写入 _id 为 2 的文档时指定使用了 uppercase-pipeline,所以该文档没有执行 default pipeline,而是执行了 uppercase-pipeline 将字母转换为大写。


GET index-3/_search
# 返回结果{ "_index" : "index-3", "_type" : "_doc", "_id" : "1", "_score" : 1.0, "_source" : { "name" : "lisa", "message" : "set by final pipeline", "age" : 18 }},{ "_index" : "index-3", "_type" : "_doc", "_id" : "2", "_score" : 1.0, "_source" : { "name" : "JERRY", "message" : "set by final pipeline", "age" : 21 }}
复制代码

3.4 Reindex 时指定 Pipeline

Elasticsearch 提供了 reindex API 用于将文档从源索引复制到目标索引,在 reindex 时可以指定 pipeline 对复制的文档进行加工处理。如下所示,先创建源索引 source-index,并插入 1 条文档。


PUT source-index/_doc/1{  "name": "Jack",  "age": 18}
复制代码


然后在 reindex 时指定使用 lowercase-pipeline,目标索引名设置为 dest-index。


POST _reindex{  "source": {    "index": "source-index"  },  "dest": {    "index": "dest-index",    "pipeline": "lowercase-pipeline"  }}
复制代码


查看目标索引,name 字段已经成功转换为了小写字母。


GET dest-index/_search
# 返回结果{ "took" : 1, "timed_out" : false, "_shards" : { "total" : 1, "successful" : 1, "skipped" : 0, "failed" : 0 }, "hits" : { "total" : { "value" : 1, "relation" : "eq" }, "max_score" : 1.0, "hits" : [ { "_index" : "dest-index", "_type" : "_doc", "_id" : "1", "_score" : 1.0, "_source" : { "name" : "jack", "age" : "18" } } ] }}
复制代码

4 总结

Ingest pipeline 是 Elasticsearch 的一个非常实用的功能,它能够帮助用户在数据进入 Elasticsearch 索引之前对其进行预处理,从而提高搜索和分析的效率和准确性。本文向读者介绍了如何有效地创建,管理和测试 ElasticSearch Ingest Pipeline。在第一小节中首先说明了 ingest pipeline 的基本用法,包括创建和使用 ingest pipeline,使用 simulate API 对 pipeline 进行测试,以及如何处理 pipeline 中的异常;在第二小节中,将 ingest pipeline 中的 processor 处理器根据用途作了分类说明,并通过示例展示了常见的几个 processor 的用法;在最后一个小节中归纳了 ingest pipeline 的 4 个应用场景。

发布于: 刚刚阅读数: 3
用户头像

Se7en

关注

还未添加个人签名 2020-01-10 加入

喜欢钻研技术,熟悉 Elasticsearch、Kubernetes 。

评论

发布
暂无评论
使用 Ingest Pipeline 在 Elasticsearch 中对数据进行预处理_Se7en_InfoQ写作社区