2025-01-04:不包含相邻元素的子序列的最大和。用 go 语言,给定一个整数数组 nums 和一个由二维数组 queries 组成的查询列表,其中每个查询的格式为 queries[i] = [pos
- 2025-01-04 北京
本文字数:7316 字
阅读完需:约 24 分钟
2025-01-04:不包含相邻元素的子序列的最大和。用 go 语言,给定一个整数数组 nums 和一个由二维数组 queries 组成的查询列表,其中每个查询的格式为 queries[i] = [posi, xi]。
对于每个查询 i,首先将 nums[posi] 的值更新为 xi,然后计算在这一更新后,数组 nums 中所有不包含相邻元素的子序列的最大和。
最后,返回所有查询的结果之和。需要注意的是,由于最终答案可能非常大,因此要对其进行 1000000007 的取余处理。
请根据以上描述进行相关的处理。
1 <= nums.length <= 5 * 10000。
-100000 <= nums[i] <= 100000。
1 <= queries.length <= 5 * 10000。
queries[i] == [posi, xi]。
0 <= posi <= nums.length - 1。
-100000 <= xi <= 100000。
答案 2025-01-04:
题目来自 leetcode3165。
大体步骤如下:
1.定义了一个常量 MOD 为 1000000007,表示取余处理的数值。
2.实现了一个函数 maximumSumSubsequence,该函数接受一个整数数组 nums 以及一个查询列表 queries。首先创建一个长度为 nums 数组长度四倍的线段树 tree,然后初始化这颗线段树根据传入的 nums 数组。接着对 queries 中的每个查询进行处理:更新 nums 中指定位置的值,并计算不包含相邻元素的子序列的最大和,并将结果取余加到 ans 中。最终返回 ans。
3.定义了一个结构体 SegNode,包含四个成员变量 v00、v01、v10、v11,表示线段树中的四种情况。
4.实现了两个 SegNode 结构体的方法:Set 和 Best,分别用于设置节点的值和获取最佳值。
5.定义了一个结构体 SegTree,包含了一个整数 n 和一个指向 SegNode 结构体数组的指针 tree。
6.实现了一个 NewSegTree 函数用于创建一个 SegTree 结构体并初始化相关信息。
7.实现了 SegTree 结构体的方法:Init、Update、Query、internalInit、internalUpdate、pushup。这些方法用于初始化线段树、更新节点值、查询最佳值等功能。
8.在 main 函数中,给定了一个示例数组 nums 和查询 queries,然后调用 maximumSumSubsequence 函数计算不包含相邻元素的子序列的最大和,并打印结果。
总的时间复杂度:
初始化线段树的时间复杂度为 O(n)。
每次查询的时间复杂度为 O(logn)。
因此,总的时间复杂度为 O(n + q*logn),其中 n 为数组长度,q 为查询次数。
总的额外空间复杂度:
线段树的空间复杂度为 O(n)。
因此,总的额外空间复杂度为 O(n),其中 n 为数组长度。
Go 完整代码如下:
package main
import (
"fmt"
"math"
)
const MOD = 1000000007
func maximumSumSubsequence(nums []int, queries [][]int) int {
n := len(nums)
tree := NewSegTree(n)
tree.Init(nums)
ans := int64(0)
for _, q := range queries {
tree.Update(q[0], q[1])
ans = (ans + tree.Query()) % MOD
}
return int(ans)
}
type SegNode struct {
v00, v01, v10, v11 int64
}
func NewSegNode() *SegNode {
return &SegNode{0, 0, 0, 0}
}
func (sn *SegNode) Set(v int64) {
sn.v00, sn.v01, sn.v10 = 0, 0, 0
sn.v11 = int64(math.Max(float64(v), 0))
}
func (sn *SegNode) Best() int64 {
return sn.v11
}
type SegTree struct {
n int
tree []*SegNode
}
func NewSegTree(n int) *SegTree {
tree := make([]*SegNode, n * 4 + 1)
for i := range tree {
tree[i] = NewSegNode()
}
return &SegTree{n, tree}
}
func (st *SegTree) Init(nums []int) {
st.internalInit(nums, 1, 1, st.n)
}
func (st *SegTree) Update(x, v int) {
st.internalUpdate(1, 1, st.n, x + 1, int64(v))
}
func (st *SegTree) Query() int64 {
return st.tree[1].Best()
}
func (st *SegTree) internalInit(nums []int, x, l, r int) {
if l == r {
st.tree[x].Set(int64(nums[l - 1]))
return
}
mid := (l + r) / 2
st.internalInit(nums, x * 2, l, mid)
st.internalInit(nums, x * 2 + 1, mid + 1, r)
st.pushup(x)
}
func (st *SegTree) internalUpdate(x, l, r int, pos int, v int64) {
if l > pos || r < pos {
return
}
if l == r {
st.tree[x].Set(v)
return
}
mid := (l + r) / 2
st.internalUpdate(x * 2, l, mid, pos, v)
st.internalUpdate(x * 2 + 1, mid + 1, r, pos, v)
st.pushup(x)
}
func (st *SegTree) pushup(x int) {
l, r := x * 2, x * 2 + 1
st.tree[x].v00 = max(st.tree[l].v00 + st.tree[r].v10, st.tree[l].v01 + st.tree[r].v00)
st.tree[x].v01 = max(st.tree[l].v00 + st.tree[r].v11, st.tree[l].v01 + st.tree[r].v01)
st.tree[x].v10 = max(st.tree[l].v10 + st.tree[r].v10, st.tree[l].v11 + st.tree[r].v00)
st.tree[x].v11 = max(st.tree[l].v10 + st.tree[r].v11, st.tree[l].v11 + st.tree[r].v01)
}
func main() {
nums := []int{3,5,9}
queries := [][]int{{1,-2},{0,-3}}
result := maximumSumSubsequence(nums, queries)
fmt.Println(result)
}
Rust 完整代码如下:
use std::cmp::max;
const MOD: i64 = 1_000_000_007;
#[derive(Clone)]
struct SegNode {
v00: i64,
v01: i64,
v10: i64,
v11: i64,
}
impl SegNode {
fn new() -> Self {
SegNode {
v00: 0,
v01: 0,
v10: 0,
v11: 0,
}
}
fn set(&mut self, v: i64) {
self.v00 = 0;
self.v01 = 0;
self.v10 = 0;
self.v11 = max(v, 0);
}
fn best(&self) -> i64 {
self.v11
}
}
struct SegTree {
n: usize,
tree: Vec<SegNode>,
}
impl SegTree {
fn new(n: usize) -> Self {
let tree = vec![SegNode::new(); n * 4];
SegTree { n, tree }
}
fn init(&mut self, nums: &[i32]) {
self.internal_init(nums, 1, 1, self.n);
}
fn update(&mut self, pos: usize, v: i32) {
self.internal_update(1, 1, self.n, pos + 1, v as i64);
}
fn query(&self) -> i64 {
self.tree[1].best()
}
fn internal_init(&mut self, nums: &[i32], x: usize, l: usize, r: usize) {
if l == r {
self.tree[x].set(nums[l - 1] as i64);
return;
}
let mid = (l + r) / 2;
self.internal_init(nums, x * 2, l, mid);
self.internal_init(nums, x * 2 + 1, mid + 1, r);
self.push_up(x);
}
fn internal_update(&mut self, x: usize, l: usize, r: usize, pos: usize, v: i64) {
if l > pos || r < pos {
return;
}
if l == r {
self.tree[x].set(v);
return;
}
let mid = (l + r) / 2;
self.internal_update(x * 2, l, mid, pos, v);
self.internal_update(x * 2 + 1, mid + 1, r, pos, v);
self.push_up(x);
}
fn push_up(&mut self, x: usize) {
let l = x * 2;
let r = x * 2 + 1;
self.tree[x].v00 = max(
self.tree[l].v00 + self.tree[r].v10,
self.tree[l].v01 + self.tree[r].v00,
);
self.tree[x].v01 = max(
self.tree[l].v00 + self.tree[r].v11,
self.tree[l].v01 + self.tree[r].v01,
);
self.tree[x].v10 = max(
self.tree[l].v10 + self.tree[r].v10,
self.tree[l].v11 + self.tree[r].v00,
);
self.tree[x].v11 = max(
self.tree[l].v10 + self.tree[r].v11,
self.tree[l].v11 + self.tree[r].v01,
);
}
}
fn maximum_sum_subsequence(nums: &[i32], queries: &[(usize, i32)]) -> i64 {
let n = nums.len();
let mut tree = SegTree::new(n);
tree.init(nums);
let mut ans = 0;
for (x, v) in queries {
tree.update(*x, *v);
ans = (ans + tree.query()) % MOD;
}
ans
}
fn main() {
let nums = vec![3, 5, 9];
let queries = vec![(1, -2), (0, -3)];
let result = maximum_sum_subsequence(&nums, &queries);
println!("{}", result);
}
C 完整代码如下:
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#define MOD 1000000007
typedef struct {
long long v00, v01, v10, v11;
} SegNode;
typedef struct {
int n;
SegNode* tree;
} SegTree;
SegNode newSegNode() {
SegNode node;
node.v00 = 0;
node.v01 = 0;
node.v10 = 0;
node.v11 = 0;
return node;
}
void setSegNode(SegNode* sn, long long v) {
sn->v00 = 0;
sn->v01 = 0;
sn->v10 = 0;
sn->v11 = fmax(v, 0);
}
long long bestSegNode(SegNode* sn) {
return sn->v11;
}
SegTree* newSegTree(int n) {
SegTree* tree = (SegTree*)malloc(sizeof(SegTree));
tree->n = n;
tree->tree = (SegNode*)malloc(sizeof(SegNode) * (4 * n + 1));
for (int i = 0; i < 4 * n + 1; i++) {
tree->tree[i] = newSegNode();
}
return tree;
}
void pushup(SegTree* st, int x);
void internalInit(SegTree* st, int* nums, int x, int l, int r) {
if (l == r) {
setSegNode(&st->tree[x], (long long)nums[l - 1]);
return;
}
int mid = (l + r) / 2;
internalInit(st, nums, x * 2, l, mid);
internalInit(st, nums, x * 2 + 1, mid + 1, r);
pushup(st, x);
}
void pushup(SegTree* st, int x) {
int l = x * 2;
int r = x * 2 + 1;
st->tree[x].v00 = fmax(st->tree[l].v00 + st->tree[r].v10, st->tree[l].v01 + st->tree[r].v00);
st->tree[x].v01 = fmax(st->tree[l].v00 + st->tree[r].v11, st->tree[l].v01 + st->tree[r].v01);
st->tree[x].v10 = fmax(st->tree[l].v10 + st->tree[r].v10, st->tree[l].v11 + st->tree[r].v00);
st->tree[x].v11 = fmax(st->tree[l].v10 + st->tree[r].v11, st->tree[l].v11 + st->tree[r].v01);
}
void internalUpdate(SegTree* st, int x, int l, int r, int pos, long long v) {
if (l > pos || r < pos) {
return;
}
if (l == r) {
setSegNode(&st->tree[x], v);
return;
}
int mid = (l + r) / 2;
internalUpdate(st, x * 2, l, mid, pos, v);
internalUpdate(st, x * 2 + 1, mid + 1, r, pos, v);
pushup(st, x);
}
long long query(SegTree* st) {
return bestSegNode(&st->tree[1]);
}
void initSegTree(SegTree* st, int* nums) {
internalInit(st, nums, 1, 1, st->n);
}
void updateSegTree(SegTree* st, int pos, int v) {
internalUpdate(st, 1, 1, st->n, pos + 1, v);
}
long long maximumSumSubsequence(int* nums, int numsSize, int(*queries)[2], int queriesSize) {
SegTree* tree = newSegTree(numsSize);
initSegTree(tree, nums);
long long ans = 0;
for (int i = 0; i < queriesSize; i++) {
updateSegTree(tree, queries[i][0], queries[i][1]);
ans = (ans + query(tree)) % MOD;
}
// Free allocated memory
free(tree->tree);
free(tree);
return ans;
}
int main() {
int nums[] = { 3, 5, 9 };
int queries[2][2] = { {1, -2}, {0, -3} };
long long result = maximumSumSubsequence(nums, 3, queries, 2);
printf("%lld\n", result);
return 0;
}
C++完整代码如下:
#include <iostream>
#include <vector>
#include <algorithm>
#include <cmath>
const int MOD = 1000000007;
class SegNode {
public:
long long v00, v01, v10, v11;
SegNode() : v00(0), v01(0), v10(0), v11(0) {}
void set(long long v) {
v00 = 0;
v01 = 0;
v10 = 0;
v11 = std::max(v, 0LL);
}
long long best() const {
return v11;
}
};
class SegTree {
private:
int n;
std::vector<SegNode> tree;
void pushup(int x) {
int l = x * 2;
int r = x * 2 + 1;
tree[x].v00 = std::max(tree[l].v00 + tree[r].v10, tree[l].v01 + tree[r].v00);
tree[x].v01 = std::max(tree[l].v00 + tree[r].v11, tree[l].v01 + tree[r].v01);
tree[x].v10 = std::max(tree[l].v10 + tree[r].v10, tree[l].v11 + tree[r].v00);
tree[x].v11 = std::max(tree[l].v10 + tree[r].v11, tree[l].v11 + tree[r].v01);
}
void internalInit(const std::vector<int>& nums, int x, int l, int r) {
if (l == r) {
tree[x].set(static_cast<long long>(nums[l - 1]));
return;
}
int mid = (l + r) / 2;
internalInit(nums, x * 2, l, mid);
internalInit(nums, x * 2 + 1, mid + 1, r);
pushup(x);
}
void internalUpdate(int x, int l, int r, int pos, long long v) {
if (l > pos || r < pos) {
return;
}
if (l == r) {
tree[x].set(v);
return;
}
int mid = (l + r) / 2;
internalUpdate(x * 2, l, mid, pos, v);
internalUpdate(x * 2 + 1, mid + 1, r, pos, v);
pushup(x);
}
public:
SegTree(int n) : n(n) {
tree.resize(n * 4);
}
void init(const std::vector<int>& nums) {
internalInit(nums, 1, 1, n);
}
void update(int pos, int v) {
internalUpdate(1, 1, n, pos + 1, static_cast<long long>(v));
}
long long query() const {
return tree[1].best();
}
};
long long maximumSumSubsequence(const std::vector<int>& nums, const std::vector<std::pair<int, int>>& queries) {
int n = nums.size();
SegTree tree(n);
tree.init(nums);
long long ans = 0;
for (const auto& query : queries) {
tree.update(query.first, query.second);
ans = (ans + tree.query()) % MOD;
}
return ans;
}
int main() {
std::vector<int> nums = { 3, 5, 9 };
std::vector<std::pair<int, int>> queries = { {1, -2}, {0, -3} };
long long result = maximumSumSubsequence(nums, queries);
std::cout << result << std::endl;
return 0;
}
Python 完整代码如下:
# -*-coding:utf-8-*-
class SegNode:
def __init__(self):
self.v00 = 0
self.v01 = 0
self.v10 = 0
self.v11 = 0
def set(self, v):
self.v00 = 0
self.v01 = 0
self.v10 = 0
self.v11 = max(v, 0)
def best(self):
return self.v11
class SegTree:
def __init__(self, n):
self.n = n
self.tree = [SegNode() for _ in range(n * 4 + 1)]
def init(self, nums):
self._internal_init(nums, 1, 1, self.n)
def update(self, x, v):
self._internal_update(1, 1, self.n, x + 1, v)
def query(self):
return self.tree[1].best()
def _internal_init(self, nums, x, l, r):
if l == r:
self.tree[x].set(nums[l - 1])
return
mid = (l + r) // 2
self._internal_init(nums, x * 2, l, mid)
self._internal_init(nums, x * 2 + 1, mid + 1, r)
self._pushup(x)
def _internal_update(self, x, l, r, pos, v):
if l > pos or r < pos:
return
if l == r:
self.tree[x].set(v)
return
mid = (l + r) // 2
self._internal_update(x * 2, l, mid, pos, v)
self._internal_update(x * 2 + 1, mid + 1, r, pos, v)
self._pushup(x)
def _pushup(self, x):
l, r = x * 2, x * 2 + 1
self.tree[x].v00 = max(self.tree[l].v00 + self.tree[r].v10, self.tree[l].v01 + self.tree[r].v00)
self.tree[x].v01 = max(self.tree[l].v00 + self.tree[r].v11, self.tree[l].v01 + self.tree[r].v01)
self.tree[x].v10 = max(self.tree[l].v10 + self.tree[r].v10, self.tree[l].v11 + self.tree[r].v00)
self.tree[x].v11 = max(self.tree[l].v10 + self.tree[r].v11, self.tree[l].v11 + self.tree[r].v01)
MOD = 1000000007
def maximum_sum_subsequence(nums, queries):
n = len(nums)
tree = SegTree(n)
tree.init(nums)
ans = 0
for q in queries:
tree.update(q[0], q[1])
ans = (ans + tree.query()) % MOD
return ans
if __name__ == "__main__":
nums = [3, 5, 9]
queries = [[1, -2], [0, -3]]
result = maximum_sum_subsequence(nums, queries)
print(result)
版权声明: 本文为 InfoQ 作者【福大大架构师每日一题】的原创文章。
原文链接:【http://xie.infoq.cn/article/0973d6b9939ed31af996518ab】。
本文遵守【CC-BY 4.0】协议,转载请保留原文出处及本版权声明。
福大大架构师每日一题
公众号:福大大架构师每日一题 2021-02-15 加入
公众号:福大大架构师每日一题
评论