【GreatSQL 优化器 -06】条件过滤导致选择非最佳
- 2024-12-11 福建
本文字数:6340 字
阅读完需:约 21 分钟
【GreatSQL 优化器-06】条件过滤导致选择非最佳
一、condition_fanout_filter 导致计划非最佳
GreatSQL 的优化器对于 join 的表需要根据行数和 cost 来确定最后哪张表先执行哪张表后执行,这里面就涉及到预估满足条件的表数据,condition_fanout_filter
会根据一系列方法计算出一个数据过滤百分比,这个比百分比就是 filtered 系数,这个值区间在[0,1],值越小代表过滤效果越好。用这个系数乘以总的行数就可以得出最后需要扫描的表行数的数量,可以大幅节省开销和执行时间。
这个功能是由OPTIMIZER_SWITCH_COND_FANOUT_FILTER这个OPTIMIZER_SWITCH
来控制的,默认是打开的。因此一般情况下不需要特意去关闭,但是如果遇到执行特别慢的一些情况可以考虑关闭。
下面用一个例子来说明condition_fanout_filter
有可能导致选择错误的情况:
# 创建2张表,都只在第二列创建索引,其中t3的最后一列也创建一个索引。
CREATE TABLE t3 (ccc1 INT, ccc2 int,ccc3 datetime(6));
INSERT INTO t3 VALUES (1,2,'2021-03-25 16:44:00.123456'),(2,10,'2021-03-25 16:44:00.123456'),(3,4,'2022-03-25 16:44:00.123456'),(4,6,'2023-03-25 16:44:00.123456'),(null,7,'2024-03-25 16:44:00.123456'),(4,3,'2024-04-25 16:44:00.123456'),(null,8,'2025-03-25 16:44:00.123456'),(3,4,'2022-06-25 16:44:00.123456'),(5,4,'2021-11-25 16:44:00.123456');
CREATE TABLE t4 (d1 INT, d2 int, d3 varchar(100));
INSERT INTO t4 VALUES (1,2,'aa1'),(2,1,'bb1'),(2,3,'cc1'),(3,3,'cc1'),(4,2,'ff1'),(4,4,'ert'),(4,2,'f5fg'),(null,2,'ee'),(5,30,'cc1'),(5,4,'fcc1'),(4,10,'cc1'),(6,4,'ccd1'),(null,1,'fee'),(1,2,'aa1'),(2,1,'bb1'),(2,3,'cc1'),(3,3,'cc1'),(4,2,'ff1'),(4,4,'ert'),(4,2,'f5fg'),(null,2,'ee'),(5,30,'cc1'),(5,4,'fcc1'),(4,10,'cc1'),(6,4,'ccd1'),(null,1,'fee'),(1,2,'aa1'),(2,1,'bb1'),(2,3,'cc1'),(3,3,'cc1'),(4,2,'ff1'),(4,4,'ert'),(4,2,'f5fg'),(null,2,'ee'),(5,30,'cc1'),(5,4,'fcc1'),(4,10,'cc1'),(6,4,'ccd1'),(null,1,'fee');
CREATE INDEX idx3_2 ON t3(ccc2);
CREATE INDEX idx3_3 ON t3(ccc3);
CREATE INDEX idx4_2 ON t4(d2);
执行一个 join 命令,where 条件涉及的列不含 t4 的索引列,但是包含 t3 的索引列。首先查看条件过滤开启的情况,结果是 t4 先执行全表扫描,预估的扫描行数为 39 * 33.33%=13 行,而 t3 执行 ref 索引扫描,行数为 1 * 11.11%=0.1 行,总行数为 2 行
greatsql> EXPLAIN SELECT * FROM t4 join t3 ON t4.d1=t3.ccc1 and t4.d2=t3.ccc2 where t4.d1<5 and t3.ccc3 < '2023-11-15';
+----+-------------+-------+------------+------+---------------+--------+---------+-----------+------+----------+-------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+-------+------------+------+---------------+--------+---------+-----------+------+----------+-------------+
| 1 | SIMPLE | t4 | NULL | ALL | idx4_2 | NULL | NULL | NULL | 39 | 33.33 | Using where |
| 1 | SIMPLE | t3 | NULL | ref | idx3_2,idx3_3 | idx3_2 | 5 | db1.t4.d2 | 1 | 11.11 | Using where |
+----+-------------+-------+------------+------+---------------+--------+---------+-----------+------+----------+-------------+
接着查看条件过滤关闭的情况,结果是 t3 先执行范围扫描,预估的扫描行数为 6 * 100%=6 行,而 t4 执行 ref 索引扫描,行数为 6 * 100%=6 行,总行数为 39 行。
greatsql> EXPLAIN SELECT /*+ set_var(optimizer_switch='condition_fanout_filter=off') */ * FROM t4 join t3 ON t4.d1=t3.ccc1 and t4.d2=t3.ccc2 where t4.d1<5 and t3.ccc3 < '2023-11-15';
+----+-------------+-------+------------+-------+---------------+--------+---------+-------------+------+----------+------------------------------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+-------+------------+-------+---------------+--------+---------+-------------+------+----------+------------------------------------+
| 1 | SIMPLE | t3 | NULL | range | idx3_2,idx3_3 | idx3_3 | 9 | NULL | 6 | 100.00 | Using index condition; Using where |
| 1 | SIMPLE | t4 | NULL | ref | idx4_2 | idx4_2 | 5 | db1.t3.ccc2 | 6 | 100.00 | Using where |
+----+-------------+-------+------------+-------+---------------+--------+---------+-------------+------+----------+------------------------------------+
接下来关掉 condition_fanout_filter 然后强制用 t4 & t3 来连接,对比一下计算出来的 cost 实际达到多少。从下面 2 个结果可以看出,t4 走了全表扫描实际的 cost 达到 21.70,是估计值的 2 倍多。
greatsql> EXPLAIN FORMAT=TREE SELECT * FROM t4 join t3 ON t4.d1=t3.ccc1 and t4.d2=t3.ccc2 where t4.d1<5 and t3.ccc3 < '2023-11-15';
+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| EXPLAIN |
+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| -> Nested loop inner join (cost=10.00 rows=2)
-> Filter: ((t4.d1 < 5) and (t4.d2 is not null)) (cost=4.15 rows=13)
-> Table scan on t4 (cost=4.15 rows=39)
-> Filter: ((t3.ccc1 = t4.d1) and (t3.ccc3 < TIMESTAMP'2023-11-15 00:00:00')) (cost=0.32 rows=0.1)
-> Index lookup on t3 using idx3_2 (ccc2=t4.d2) (cost=0.32 rows=1)
|
+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
greatsql> EXPLAIN FORMAT=TREE SELECT /*+ set_var(optimizer_switch='condition_fanout_filter=off') qb_name(qb1) JOIN_ORDER(@qb1 t4,t3) */ * FROM t4 join t3 ON t4.d1=t3.ccc1 and t4.d2=t3.ccc2 where t4.d1<5 and t3.ccc3 < '2023-11-15';
+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| EXPLAIN |
+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| -> Nested loop inner join (cost=21.70 rows=50)
-> Filter: ((t4.d1 < 5) and (t4.d2 is not null)) (cost=4.15 rows=39)
-> Table scan on t4 (cost=4.15 rows=39)
-> Filter: ((t3.ccc1 = t4.d1) and (t3.ccc3 < TIMESTAMP'2023-11-15 00:00:00')) (cost=0.32 rows=1)
-> Index lookup on t3 using idx3_2 (ccc2=t4.d2) (cost=0.32 rows=1)
|
+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
以上例子因为condition_fanout_filter
的设置不同而导致选择了不同的驱动表,最后的扫描行为也不一样。但是明显先执行 t3 的索引范围扫描比 t4 的全表扫描效率高,因此这个例子可以看出 condition_fanout_filter 的预估过滤百分比有更多主观性,最终可能导致错误的优化路径。
附表:join_type 访问方法的类型
以上各类扫描方式由快到慢排序为:system > const > eq_ref > ref > range > index > ALL
二、不关 condition_fanout_filter 的解决办法
如果不关闭condition_fanout_filter
有没有办法强制指定连接顺序呢?答案是有的。一共如下 3 个方法,可以按照自己的需要进行灵活操作。
1、使用 qb_name 提示词来指定连接顺序
greatsql> EXPLAIN SELECT /*+ qb_name(qb1) JOIN_ORDER(@qb1 t3,t4) */ * FROM t4 join t3 ON t4.d1=t3.ccc1 and t4.d2=t3.ccc2 where t4.d1<5 and t3.ccc3 < '2023-11-15';
+----+-------------+-------+------------+-------+---------------+--------+---------+-------------+------+----------+------------------------------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+-------+------------+-------+---------------+--------+---------+-------------+------+----------+------------------------------------+
| 1 | SIMPLE | t3 | NULL | range | idx3_2,idx3_3 | idx3_3 | 9 | NULL | 6 | 100.00 | Using index condition; Using where |
| 1 | SIMPLE | t4 | NULL | ref | idx4_2 | idx4_2 | 5 | db1.t3.ccc2 | 6 | 3.33 | Using where |
+----+-------------+-------+------------+-------+---------------+--------+---------+-------------+------+----------+------------------------------------+
2、在所有 WHERE 条件列上建立索引
greatsql> CREATE INDEX idx4_1 ON t4(d1);
greatsql> EXPLAIN SELECT * FROM t4 join t3 ON t4.d1=t3.ccc1 and t4.d2=t3.ccc2 where t4.d1<5 and t3.ccc3 < '2023-11-15';
+----+-------------+-------+------------+-------+---------------+--------+---------+-------------+------+----------+------------------------------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+-------+------------+-------+---------------+--------+---------+-------------+------+----------+------------------------------------+
| 1 | SIMPLE | t3 | NULL | range | idx3_2,idx3_3 | idx3_3 | 9 | NULL | 6 | 100.00 | Using index condition; Using where |
| 1 | SIMPLE | t4 | NULL | ref | idx4_2,idx4_1 | idx4_1 | 5 | db1.t3.ccc1 | 5 | 16.67 | Using where |
+----+-------------+-------+------------+-------+---------------+--------+---------+-------------+------+----------+------------------------------------+
3、用 JOIN_FIXED_ORDER hint 加上表顺序来强制连接顺序。
greatsql> EXPLAIN SELECT /*+ qb_name(qb1) JOIN_FIXED_ORDER(@qb1) */ * FROM t3 join t4 ON t4.d1=t3.ccc1 AND t4.d2=t3.ccc2 WHERE t4.d1<5 AND t3.ccc3 < '2023-11-15';
+----+-------------+-------+------------+-------+---------------+--------+---------+-------------+------+----------+------------------------------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+-------+------------+-------+---------------+--------+---------+-------------+------+----------+------------------------------------+
| 1 | SIMPLE | t3 | NULL | range | idx3_2,idx3_3 | idx3_3 | 9 | NULL | 6 | 100.00 | Using index condition; Using where |
| 1 | SIMPLE | t4 | NULL | ref | idx4_2 | idx4_2 | 5 | db1.t3.ccc2 | 6 | 3.33 | Using where |
+----+-------------+-------+------------+-------+---------------+--------+---------+-------------+------+----------+------------------------------------+
三、如何排查类似问题
从以上例子看出,打开条件过滤有时并不总是能提高性能,优化器可能会高估条件过滤的影响,个别场景下使用条件过滤反而会导致性能下降。GreatSQL 的condition_fanout_filter
参数默认是打开的,因此需要自己来判断是否需要这个功能。一般来说,遇到以下场景需要特别注意条件过滤错估的情况。
四、总结
这节用了一个例子展示了条件过滤误判的情况,知道了打开条件过滤有时并不总是能提高性能,优化器可能会高估条件过滤的影响,个别场景下使用条件过滤反而会导致性能下降。GreatSQL 的condition_fanout_filter
参数默认是打开的,因此需要自己来判断是否需要这个功能。
版权声明: 本文为 InfoQ 作者【GreatSQL】的原创文章。
原文链接:【http://xie.infoq.cn/article/093642465a6806d067ce4fad9】。文章转载请联系作者。
GreatSQL
GreatSQL社区 2023-01-31 加入
GreatSQL是由万里数据库维护的MySQL分支,专注于提升MGR可靠性及性能,支持InnoDB并行查询特性,是适用于金融级应用的MySQL分支版本。 社区:https://greatsql.cn/ Gitee: https://gitee.com/GreatSQL/GreatSQL
评论