写点什么

用 javascript 分类刷 leetcode3. 动态规划 (图文视频讲解)

作者:Geek_07a724
  • 2022-11-14
    浙江
  • 本文字数:10379 字

    阅读完需:约 34 分钟

什么是动态规划

动态规划,英文:Dynamic Programming,简称DP,将问题分解为互相重叠的子问题,通过反复求解子问题来解决原问题就是动态规划,如果某一问题有很多重叠子问题,使用动态规划来解是比较有效的。


求解动态规划的核心问题是穷举,但是这类问题穷举有点特别,因为这类问题存在「重叠子问题」,如果暴力穷举的话效率会极其低下。动态规划问题一定会具备「最优子结构」,才能通过子问题的最值得到原问题的最值。另外,虽然动态规划的核心思想就是穷举求最值,但是问题可以千变万化,穷举所有可行解其实并不是一件容易的事,只有列出正确的「状态转移方程」才能正确地穷举。重叠子问题、最优子结构、状态转移方程就是动态规划三要素

动态规划和其他算法的区别

  1. 动态规划和分治的区别:动态规划和分治都有最优子结构 ,但是分治的子问题不重叠

  2. 动态规划和贪心的区别:动态规划中每一个状态一定是由上一个状态推导出来的,这一点就区分于贪心,贪心没有状态推导,而是从局部直接选最优解,所以它永远是局部最优,但是全局的解不一定是最优的。

  3. 动态规划和递归的区别:递归和回溯可能存在非常多的重复计算,动态规划可以用递归加记忆化的方式减少不必要的重复计算

动态规划的解题方法

  • 递归+记忆化(自顶向下)

  • 动态规划(自底向上)


解动态规划题目的步骤

  1. 根据重叠子问题定义状态

  2. 寻找最优子结构推导状态转移方程

  3. 确定 dp 初始状态

  4. 确定输出值

斐波那契的动态规划的解题思路


动画过大,点击查看


暴力递归


//暴力递归复杂度O(2^n)var fib = function (N) {    if (N == 0) return 0;    if (N == 1) return 1;    return fib(N - 1) + fib(N - 2);};
复制代码


递归 + 记忆化


var fib = function (n) {    const memo = {}; // 对已算出的结果进行缓存
const helper = (x) => { if (memo[x]) return memo[x]; if (x == 0) return 0; if (x == 1) return 1; memo[x] = helper(x - 1) + helper(x - 2); return memo[x]; };
return helper(n);};
复制代码


动态规划


const fib = (n) => {    if (n <= 1) return n;    const dp = [0, 1];    for (let i = 2; i <= n; i++) {        //自底向上计算每个状态        dp[i] = dp[i - 1] + dp[i - 2];    }    return dp[n];};
复制代码


滚动数组优化


const fib = (n) => {    if (n <= 1) return n;    //滚动数组 dp[i]只和dp[i-1]、dp[i-2]相关,只维护长度为2的滚动数组,不断替换数组元素    const dp = [0, 1];    let sum = null;    for (let i = 2; i <= n; i++) {        sum = dp[0] + dp[1];        dp[0] = dp[1];        dp[1] = sum;    }    return sum;};
复制代码


动态规划 + 降维,(降维能减少空间复杂度,但不利于程序的扩展)


var fib = function (N) {    if (N <= 1) {        return N;    }    let prev2 = 0;    let prev1 = 1;    let result = 0;    for (let i = 2; i <= N; i++) {        result = prev1 + prev2; //直接用两个变量就行        prev2 = prev1;        prev1 = result;    }    return result;};
复制代码

343. 整数拆分 (medium)

视频讲解:传送门


给定一个正整数 n ,将其拆分为 k 个 正整数 的和( k >= 2 ),并使这些整数的乘积最大化。

返回 你可以获得的最大乘积 。

 

示例 1:

输入: n = 2 输出: 1 解释: 2 = 1 + 1, 1 × 1 = 1。示例 2:

输入: n = 10 输出: 36 解释: 10 = 3 + 3 + 4, 3 × 3 × 4 = 36。 

提示:

2 <= n <= 58



  • 思路:dp[i]为正整数 i 拆分之后的最大乘积,循环数字 n,对每个数字进行拆分,取最大的乘积,状态转移方程:dp[i] = Math.max(dp[i], dp[i - j] * j, (i - j) * j)j*(i-j)表示把 i 拆分为j和 i-j 两个数相乘,j * dp[i-j]表示把i拆分成j和继续把(i-j)这个数拆分,取(i-j)拆分结果中的最大乘积与 j 相乘

  • 复杂度:时间复杂度O(n^2),两层循环。空间复杂度O(n)dp数组的空间


js:


var integerBreak = function (n) {    //dp[i]为正整数i拆分之后的最大乘积    let dp = new Array(n + 1).fill(0);    dp[2] = 1;
for (let i = 3; i <= n; i++) { for (let j = 1; j < i; j++) { //j*(i-j)表示把i拆分为j和i-j两个数相乘 //j*dp[i-j]表示把i拆分成j和继续把(i-j)这个数拆分,取(i-j)拆分结果中的最大乘积与j相乘 dp[i] = Math.max(dp[i], dp[i - j] * j, (i - j) * j); } } return dp[n];};
复制代码

152. 乘积最大子数组 (medium)

视频讲解:传送门


给你一个整数数组 nums ,请你找出数组中乘积最大的非空连续子数组(该子数组中至少包含一个数字),并返回该子数组所对应的乘积。

测试用例的答案是一个 32-位 整数。

子数组 是数组的连续子序列。

 

示例 1:

输入: nums = [2,3,-2,4]输出: 6 解释: 子数组 [2,3] 有最大乘积 6。示例 2:

输入: nums = [-2,0,-1]输出: 0 解释: 结果不能为 2, 因为 [-2,-1] 不是子数组。 

提示:

1 <= nums.length <= 2 * 104-10 <= nums[i] <= 10nums 的任何前缀或后缀的乘积都 保证 是一个 32-位 整数

方法 1.动态规划


  • 思路:

  • 状态定义:dp[i][0]表示从第 0 项到第 i 项范围内的子数组的最小乘积,dp[i][1]表示从第 0 项到第 i 项范围内的子数组的最大乘积

  • 初始状态:dp[0][0]=nums[0], dp[0][1]=nums[0]

  • 分情况讨论:

  • 不和别人乘,就 nums[i]自己

  • num[i] 是负数,希望乘上前面的最大积

  • num[i] 是正数,希望乘上前面的最小积

  • 状态转移方程:

  • dp[i] [0]=min(dp[i−1] [0]∗num[i] , dp[i−1] [1] ∗ num[i], num[i])

  • dp[i] [1]=max(dp[i−1] [0]∗num[i] , dp[i−1] [1] ∗ num[i], num[i])

  • 状态压缩:dp[i][x]只与dp[i][x]-1,所以只需定义两个变量,prevMin = nums[0]prevMax = nums[0]

  • 状态压缩之后的方程:

  • prevMin = Math.min(prevMin * num[i], prevMax * num[i], nums[i])

  • prevMax = Math.max(prevMin * num[i], prevMax * num[i], nums[i])

  • 复杂度:时间复杂度O(n),空间复杂度O(1)


js:


var maxProduct = (nums) => {    let res = nums[0]    let prevMin = nums[0]    let prevMax = nums[0]    let temp1 = 0, temp2 = 0    for (let i = 1; i < nums.length; i++) {        temp1 = prevMin * nums[i]        temp2 = prevMax * nums[i]        prevMin = Math.min(temp1, temp2, nums[i])        prevMax = Math.max(temp1, temp2, nums[i])        res = Math.max(prevMax, res)    }    return res}
复制代码

62. 不同路径 (medium)

视频讲解:传送门


一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。

问总共有多少条不同的路径?

 

示例 1:

输入:m = 3, n = 7 输出:28 示例 2:

输入:m = 3, n = 2 输出:3 解释:从左上角开始,总共有 3 条路径可以到达右下角。

  1. 向右 -> 向下 -> 向下

  2. 向下 -> 向下 -> 向右

  3. 向下 -> 向右 -> 向下

示例 3:

输入:m = 7, n = 3 输出:28 示例 4:

输入:m = 3, n = 3 输出:6 

提示:

1 <= m, n <= 100 题目数据保证答案小于等于 2 * 109

方法 1.动态规划

动画过大,点击查看


  • 思路:由于在每个位置只能向下或者向右, 所以每个坐标的路径和等于上一行相同位置和上一列相同位置不同路径的总和,状态转移方程:f[i][j] = f[i - 1][j] + f[i][j - 1];

  • 复杂度:时间复杂度O(mn)。空间复杂度O(mn),优化后O(n)


js:


var uniquePaths = function (m, n) {    const f = new Array(m).fill(0).map(() => new Array(n).fill(0)); //初始dp数组    for (let i = 0; i < m; i++) {        //初始化列        f[i][0] = 1;    }    for (let j = 0; j < n; j++) {        //初始化行        f[0][j] = 1;    }    for (let i = 1; i < m; i++) {        for (let j = 1; j < n; j++) {            f[i][j] = f[i - 1][j] + f[i][j - 1];        }    }    return f[m - 1][n - 1];};
//状态压缩var uniquePaths = function (m, n) { let cur = new Array(n).fill(1); for (let i = 1; i < m; i++) { for (let r = 1; r < n; r++) { cur[r] = cur[r - 1] + cur[r]; } } return cur[n - 1];};
复制代码

312. 戳气球 (hard)

视频讲解:传送门


有 n 个气球,编号为 0 到 n - 1,每个气球上都标有一个数字,这些数字存在数组 nums 中。

现在要求你戳破所有的气球。戳破第 i 个气球,你可以获得 nums[i - 1] * nums[i] * nums[i + 1] 枚硬币。 这里的 i - 1 和 i + 1 代表和 i 相邻的两个气球的序号。如果 i - 1 或 i + 1 超出了数组的边界,那么就当它是一个数字为 1 的气球。

求所能获得硬币的最大数量。

 

示例 1:输入:nums = [3,1,5,8]输出:167 解释:nums = [3,1,5,8] --> [3,5,8] --> [3,8] --> [8] --> []coins = 315 + 358 + 138 + 181 = 167 示例 2:

输入:nums = [1,5]输出:10 

提示:

n == nums.length1 <= n <= 3000 <= nums[i] <= 100

方法 1:动态规划


  • 思路:dp[i][j] 表示开区间 (i,j) 能拿到的的金币,k 是这个区间 最后一个 被戳爆的气球,枚举ij,遍历所有区间,i-j能获得的最大数量的金币等于 戳破当前的气球获得的金钱加上之前i-kk-j区间中已经获得的金币

  • 复杂度:时间复杂度O(n^3),n 是气球的数量,三层遍历。空间复杂度O(n^2),dp 数组的空间。


js:


var maxCoins = function (nums) {    const n = nums.length;    let points = [1, ...nums, 1]; //两边添加虚拟气球    const dp = Array.from(Array(n + 2), () => Array(n + 2).fill(0)); //dp数组初始化    //自底向上转移状态    for (let i = n; i >= 0; i--) {        //i不断减小        for (let j = i + 1; j < n + 2; j++) {            //j不断扩大            for (let k = i + 1; k < j; k++) {                //枚举k在i和j中的所有可能                //i-j能获得的最大数量的金币等于 戳破当前的气球获得的金钱加上之前i-k,k-j区间中已经获得的金币                dp[i][j] = Math.max(                    //挑战最大值                    dp[i][j],                    dp[i][k] + dp[k][j] + points[j] * points[k] * points[i]                );            }        }    }    return dp[0][n + 1];};
复制代码

279. 完全平方数 (medium)

视频讲解:传送门


给你一个整数 n ,返回 和为 n 的完全平方数的最少数量 。

完全平方数 是一个整数,其值等于另一个整数的平方;换句话说,其值等于一个整数自乘的积。例如,1、4、9 和 16 都是完全平方数,而 3 和 11 不是。

 

示例 1:

输入:n = 12 输出:3 解释:12 = 4 + 4 + 4 示例 2:

输入:n = 13 输出:2 解释:13 = 4 + 9 提示:

1 <= n <= 104


方法 1:动态规划
  • 思路:dp[i] 表示i的完全平方和的最少数量,dp[i - j * j] + 1表示减去一个完全平方数j的完全平方之后的数量加 1 就等于dp[i],只要在dp[i], dp[i - j * j] + 1中寻找一个较少的就是最后dp[i]的值。

  • 复杂度:时间复杂度O(n* sqrt(n)),n是输入的整数,需要循环n次,每次计算dp方程的复杂度sqrt(n),空间复杂度O(n)



js:


var numSquares = function (n) {    const dp = [...Array(n)].map((_) => 0); //初始化dp数组 当n为0的时候    for (let i = 1; i <= n; i++) {        dp[i] = i; // 最坏的情况就是每次+1 比如: dp[3]=1+1+1        for (let j = 1; i - j * j >= 0; j++) {//枚举前一个状态            dp[i] = Math.min(dp[i], dp[i - j * j] + 1); // 动态转移方程        }    }    return dp[n];};
复制代码

509. 斐波那契数(easy)

视频讲解:传送门


斐波那契数 (通常用 F(n) 表示)形成的序列称为 斐波那契数列 。该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和。也就是:

F(0) = 0,F(1) = 1F(n) = F(n - 1) + F(n - 2),其中 n > 1 给定 n ,请计算 F(n) 。

 

示例 1:

输入:n = 2 输出:1 解释:F(2) = F(1) + F(0) = 1 + 0 = 1 示例 2:

输入:n = 3 输出:2 解释:F(3) = F(2) + F(1) = 1 + 1 = 2 示例 3:

输入:n = 4 输出:3 解释:F(4) = F(3) + F(2) = 2 + 1 = 3 

提示:

0 <= n <= 30

方法 1.动态规划
  • 思路:自底而上的动态规划

  • 复杂度分析:时间复杂度O(n),空间复杂度O(1)


Js:


var fib = function (N) {    if (N <= 1) {        return N;    }    let prev2 = 0;    let prev1 = 1;    let result = 0;    for (let i = 2; i <= N; i++) {        result = prev1 + prev2;        prev2 = prev1;        prev1 = result;    }    return result;};
复制代码

64. 最小路径和 (medium)

视频讲解:传送门


给定一个包含非负整数的 m x n 网格 grid ,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。

说明:每次只能向下或者向右移动一步。

 

示例 1:

输入:grid = [[1,3,1],[1,5,1],[4,2,1]]输出:7 解释:因为路径 1→3→1→1→1 的总和最小。示例 2:

输入:grid = [[1,2,3],[4,5,6]]输出:12 

提示:

m == grid.lengthn == grid[i].length1 <= m, n <= 2000 <= grid[i][j] <= 100



  • 思路:dp[i][j]表示从矩阵左上角到(i,j)这个网格对应的最小路径和,只要从上到下,从左到右遍历网格,当前最小路径和就是当前的数值加上上面和左边左小的。

  • 复杂度:时间复杂度O(mn),m、n 分别是矩阵的长和宽。空间复杂度如果原地修改是O(1),如果新建 dp 数组就是O(mn)


js:


var minPathSum = function(dp) {    let row = dp.length, col = dp[0].length
for(let i = 1; i < row; i++)//初始化第一列 dp[i][0] += dp[i - 1][0]
for(let j = 1; j < col; j++)//初始化第一行 dp[0][j] += dp[0][j - 1]
for(let i = 1; i < row; i++) for(let j = 1; j < col; j++) dp[i][j] += Math.min(dp[i - 1][j], dp[i][j - 1])//取上面和左边最小的
return dp[row - 1][col - 1]};
复制代码

0-1 背包问题

0-1 背包问题指的是有n个物品和容量为j的背包,weight数组中记录了n个物品的重量,位置i的物品重量是 weight[i],value数组中记录了n个物品的价值,位置 i 的物品价值是vales[i],每个物品只能放一次到背包中,问将那些物品装入背包,使背包的价值最大。


举例:



我们用动态规划的方式来做


  • 状态定义:dp[i][j] 表示从前 i 个物品里任意取,放进容量为 j 的背包,价值总和最大是多少

  • 状态转移方程: dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]); 每个物品有放入背包和不放入背包两种情况

  • j - weight[i]<0:表示装不下i号元素了,不放入背包,此时dp[i][j] = dp[i - 1][j],dp[i] [j]取决于前i-1中的物品装入容量为j的背包中的最大价值

  • j - weight[i]>=0:可以选择放入或者不放入背包。放入背包则:dp[i][j] = dp[i - 1][j - weight[i]] + value[i]dp[i - 1][j - weight[i]] 表示i-1中的物品装入容量为j-weight[i]的背包中的最大价值,然后在加上放入的物品的价值value[i]就可以将状态转移到dp[i][j]。不放入背包则:dp[i][j] = dp[i - 1] [j],在这两种情况中取较大者。

  • 初始化 dp 数组:dp[i][0]表示背包的容积为 0,则背包的价值一定是 0,dp[0][j]表示第 0 号物品放入背包之后背包的价值


  • 最终需要返回值:就是 dp 数组的最后一行的最后一列


循环完成之后的 dp 数组如下图



js:


function testWeightBagProblem(wight, value, size) {    const len = wight.length,        dp = Array.from({ length: len + 1 }).map(//初始化dp数组            () => Array(size + 1).fill(0)        );    //注意我们让i从1开始,因为我们有时会用到i - 1,为了防止数组越界    //所以dp数组在初始化的时候,长度是wight.length+1    for (let i = 1; i <= len; i++) {        for (let j = 0; j <= size; j++) {            //因为weight的长度是wight.length+1,并且物品下标从1开始,所以这里i要减1            if (wight[i - 1] <= j) {                dp[i][j] = Math.max(                    dp[i - 1][j],                    value[i - 1] + dp[i - 1][j - wight[i - 1]]                )            } else {                dp[i][j] = dp[i - 1][j];            }        }    }
return dp[len][size];}
function test() { console.log(testWeightBagProblem([1, 3, 4], [15, 20, 30], 4));}
test();
复制代码

状态压缩

根据状态转移方程dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]),第 i 行只与第 i-1 行状态相关,所以我们可以用滚动数组进行状态压缩,其次我们注意到,j 只与 j 前面的状态相关,所以只用一个数组从后向前计算状态就可以了。


动画过大,点击查看


function testWeightBagProblem2(wight, value, size) {    const len = wight.length,        dp = Array(size + 1).fill(0);    for (let i = 1; i <= len; i++) {        //从后向前计算,如果从前向后的话,最新的值会覆盖老的值,导致计算结果不正确          //dp[i][j] = Math.max(dp[i - 1][j], dp[i - 1][j - wight[i - 1]] + value[i - 1])        for (let j = size; j >= wight[i - 1]; j--) {            dp[j] = Math.max(dp[j], dp[j - wight[i - 1]] + value[i - 1] );        }    }    return dp[size];}
复制代码

416. 分割等和子集 (medium)

视频讲解:传送门


给你一个 只包含正整数 的 非空 数组 nums 。请你判断是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。

 

示例 1:

输入:nums = [1,5,11,5]输出:true 解释:数组可以分割成 [1, 5, 5] 和 [11] 。示例 2:

输入:nums = [1,2,3,5]输出:false 解释:数组不能分割成两个元素和相等的子集。 

提示:

1 <= nums.length <= 2001 <= nums[i] <= 100



  • 思路:本题可以看成是 0-1 背包问题,给一个可装载重量为 sum / 2 的背包和 N 个物品,每个物品的重量记录在 nums 数组中,问是否在一种装法,能够恰好将背包装满?dp[i][j]表示前 i 个物品是否能装满容积为 j 的背包,当dp[i][j]为 true 时表示恰好可以装满。每个数都有放入背包和不放入两种情况,分析方法和 0-1 背包问题一样。

  • 复杂度:时间复杂度O(n*sum),n 是 nums 数组长度,sum 是 nums 数组元素的和。空间复杂度O(n * sum),状态压缩之后是O(sum)


js:


//可以看成是0-1背包问题,给一个可装载重量为 sum / 2 的背包和 N 个物品,//每个物品的重量记录在 nums 数组中,问是否在一种装法,能够恰好将背包装满?var canPartition = function (nums) {    let sum = 0    let n = nums.length    for (let i = 0; i < n; i++) {        sum += nums[i]    }    if (sum % 2 !== 0) {//如果是奇数,那么分割不了,直接返回false        return false    }    sum = sum / 2    //dp[i][j]表示前i个物品是否能装满容积为j的背包,当dp[i][j]为true时表示恰好可以装满    //最后求的是 dp[n][sum] 表示前n个物品能否把容量为sum的背包恰好装满    //dp数组长度是n+1,而且是二维数组,第一维表示物品的索引,第二个维度表示背包大小    let dp = new Array(n + 1).fill(0).map(() => new Array(sum + 1).fill(false))    //dp数组初始化,dp[..][0] = true表示背包容量为0,这时候就已经装满了,    //dp[0][..] = false 表示没有物品,肯定装不满    for (let i = 0; i <= n; i++) {        dp[i][0] = true    }    for (let i = 1; i <= n; i++) {//i从1开始遍历防止取dp[i - 1][j]的时候数组越界        let num = nums[i - 1]        //j从1开始,j为0的情况已经在dp数组初始化的时候完成了        for (let j = 1; j <= sum; j++) {            if (j - num < 0) {//背包容量不足 不能放入背包                dp[i][j] = dp[i - 1][j];//dp[i][j]取决于前i-1个物品是否能前好装满j的容量            } else {                //dp[i - 1][j]表示不装入第i个物品                //dp[i - 1][j-num]表示装入第i个,此时需要向前看前i - 1是否能装满j-num                //和背包的区别,这里只是返回true和false 表示能否装满,不用计算价值                dp[i][j] = dp[i - 1][j] || dp[i - 1][j - num];            }        }    }    return dp[n][sum]};
//状态转移方程 F[i, target] = F[i - 1, target] || F[i - 1, target - nums[i]]//第 n 行的状态只依赖于第 n-1 行的状态//状态压缩var canPartition = function (nums) { let sum = nums.reduce((acc, num) => acc + num, 0); if (sum % 2) { return false; } sum = sum / 2; const dp = Array.from({ length: sum + 1 }).fill(false); dp[0] = true;
for (let i = 1; i <= nums.length; i++) { //从后向前计算,如果从前向后的话,最新的值会覆盖老的值,导致计算结果不正确 for (let j = sum; j > 0; j--) { dp[j] = dp[j] || (j - nums[i] >= 0 && dp[j - nums[i]]); } }
return dp[sum];};
复制代码

322. 零钱兑换 (medium)

视频讲解:传送门


给你一个整数数组 coins ,表示不同面额的硬币;以及一个整数 amount ,表示总金额。

计算并返回可以凑成总金额所需的 最少的硬币个数 。如果没有任何一种硬币组合能组成总金额,返回 -1 。

你可以认为每种硬币的数量是无限的。

 

示例 1:

输入:coins = [1, 2, 5], amount = 11 输出:3 解释:11 = 5 + 5 + 1 示例 2:

输入:coins = [2], amount = 3 输出:-1 示例 3:

输入:coins = [1], amount = 0 输出:0 

提示:

1 <= coins.length <= 121 <= coins[i] <= 231 - 10 <= amount <= 104



不能用贪心做,反例,coins=[1, 3, 5, 6, 7]amount=30,用贪心先用最大的面额 7,在用 2 个 1,4 * 7 + 2 * 1 = 30,但是我们用 5 个 6,5 * 6 = 30 就能用最少的硬币兑换完成


方法 1.动态规划


  • 思路:dp[i]表示兑换面额i所需要的最少硬币,因为硬币无限,所以可以自底向上计算dp[i],对于dp[0~i]的每个状态,循环coins数组,寻找可以兑换的组合,用i面额减去当前硬币价值,dp[i-coin]在加上一个硬币数就是dp[i],最后取最小值就是答案,状态转移方程就是dp[i] = Math.min(dp[i], dp[i - coin] + 1);

  • 复杂度分析:时间复杂度是 O(sn),s 是兑换金额,n 是硬币数组长度,一共需要计算 s 个状态,每个状态需要遍历 n 个面额来转移状态。空间复杂度是O(s),也就是 dp 数组的长度


Js:


var coinChange = function (coins, amount) {    let dp = new Array(amount + 1).fill(Infinity);//初始化dp数组    dp[0] = 0;//面额0只需要0个硬币兑换
for (let i = 1; i <= amount; i++) {//循环面额 for (let coin of coins) {//循环硬币数组 if (i - coin >= 0) {//当面额大于硬币价值时 //dp[i - coin]: 当前面额i减当前硬币价值所需要的最少硬币 //dp[i] 可由 dp[i - coin] + 1 转换而来 dp[i] = Math.min(dp[i], dp[i - coin] + 1); } } }
return dp[amount] === Infinity ? -1 : dp[amount];//如果dp[amount] === Infinity,则无法兑换};
复制代码

198. 打家劫舍 (medium)

视频讲解:传送门


你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。

给定一个代表每个房屋存放金额的非负整数数组,计算你 不触动警报装置的情况下 ,一夜之内能够偷窃到的最高金额。

 

示例 1:

输入:[1,2,3,1]输出:4 解释:偷窃 1 号房屋 (金额 = 1) ,然后偷窃 3 号房屋 (金额 = 3)。  偷窃到的最高金额 = 1 + 3 = 4 。示例 2:

输入:[2,7,9,3,1]输出:12 解释:偷窃 1 号房屋 (金额 = 2), 偷窃 3 号房屋 (金额 = 9),接着偷窃 5 号房屋 (金额 = 1)。  偷窃到的最高金额 = 2 + 9 + 1 = 12 。 

提示:

1 <= nums.length <= 1000 <= nums[i] <= 400



  • 思路:dp[i]表示 0-i 能偷的最大金额,dp[i]由两种情况中的最大值转移过来

  • dp[i - 2] + nums[i] 表示偷当前位置,那么 i-1 的位置不能偷,而且需要加上dp[i-2],也就是前 i-2 个房间的金钱

  • dp[i - 1]表示偷当前位置,只偷 i-1 的房间

  • 复杂度:时间复杂度O(n),遍历一次数组,空间复杂度O(1),状态压缩之后是O(1),没有状态压缩是O(n)


js:


//dp[i]表示0-i能偷的最大金额const rob = (nums) => {    const len = nums.length;    const dp = [nums[0], Math.max(nums[0], nums[1])]; //初始化dp数组的前两项    for (let i = 2; i < len; i++) {        //从第三个位置开始遍历        //dp[i - 2] + nums[i] 表示偷当前位置,那么i-1的位置不能偷,          //而且需要加上dp[i-2],也就是前i-2个房间的金钱        //dp[i - 1]表示偷当前位置,只偷i-1的房间        dp[i] = Math.max(dp[i - 2] + nums[i], dp[i - 1]);    }    return dp[len - 1]; //返回最后最大的项};
//状态压缩var rob = function (nums) { if(nums.length === 1) return nums[0] let len = nums.length; let dp_0 = nums[0], dp_1 = Math.max(nums[0], nums[1]); let dp_max = dp_1; for (let i = 2; i < len; i++) { dp_max = Math.max( dp_1, //不抢当前家 dp_0 + nums[i] //抢当前家 ); dp_0 = dp_1; //滚动交换变量 dp_1 = dp_max; } return dp_max;};
复制代码


用户头像

Geek_07a724

关注

还未添加个人签名 2022-09-14 加入

还未添加个人简介

评论

发布
暂无评论
用javascript分类刷leetcode3.动态规划(图文视频讲解)_JavaScript_Geek_07a724_InfoQ写作社区