JavaScript 为什么要进行变量提升,它导致了什么问题?
变量提升的表现是,无论在函数中何处位置声明的变量,好像都被提升到了函数的首部,可以在变量声明前访问到而不会报错。
造成变量声明提升的本质原因是 js 引擎在代码执行前有一个解析的过程,创建了执行上下文,初始化了一些代码执行时需要用到的对象。当访问一个变量时,会到当前执行上下文中的作用域链中去查找,而作用域链的首端指向的是当前执行上下文的变量对象,这个变量对象是执行上下文的一个属性,它包含了函数的形参、所有的函数和变量声明,这个对象的是在代码解析的时候创建的。
首先要知道,JS 在拿到一个变量或者一个函数的时候,会有两步操作,即解析和执行。
那为什么会进行变量提升呢?主要有以下两个原因:
(1)提高性能 在 JS 代码执行之前,会进行语法检查和预编译,并且这一操作只进行一次。这么做就是为了提高性能,如果没有这一步,那么每次执行代码前都必须重新解析一遍该变量(函数),而这是没有必要的,因为变量(函数)的代码并不会改变,解析一遍就够了。
在解析的过程中,还会为函数生成预编译代码。在预编译时,会统计声明了哪些变量、创建了哪些函数,并对函数的代码进行压缩,去除注释、不必要的空白等。这样做的好处就是每次执行函数时都可以直接为该函数分配栈空间(不需要再解析一遍去获取代码中声明了哪些变量,创建了哪些函数),并且因为代码压缩的原因,代码执行也更快了。
(2)容错性更好
变量提升可以在一定程度上提高 JS 的容错性,看下面的代码:
a = 1;var a;console.log(a);
复制代码
如果没有变量提升,这两行代码就会报错,但是因为有了变量提升,这段代码就可以正常执行。
虽然,在可以开发过程中,可以完全避免这样写,但是有时代码很复杂的时候。可能因为疏忽而先使用后定义了,这样也不会影响正常使用。由于变量提升的存在,而会正常运行。
总结:
变量提升虽然有一些优点,但是他也会造成一定的问题,在 ES6 中提出了 let、const 来定义变量,它们就没有变量提升的机制。下面看一下变量提升可能会导致的问题:
var tmp = new Date();
function fn(){
console.log(tmp);
if(false){
var tmp = 'hello world';
}
}
fn(); // undefined
复制代码
在这个函数中,原本是要打印出外层的 tmp 变量,但是因为变量提升的问题,内层定义的 tmp 被提到函数内部的最顶部,相当于覆盖了外层的 tmp,所以打印结果为 undefined。
var tmp = 'hello world';
for (var i = 0; i < tmp.length; i++) {
console.log(tmp[i]);
}
console.log(i); // 11
复制代码
由于遍历时定义的 i 会变量提升成为一个全局变量,在函数结束之后不会被销毁,所以打印出来 11。
前端进阶面试题详细解答
NaN 是什么,用 typeof 会输出什么?
Not a Number,表示非数字,typeof NaN === 'number'
如何提⾼webpack 的打包速度?
(1)优化 Loader
对于 Loader 来说,影响打包效率首当其冲必属 Babel 了。因为 Babel 会将代码转为字符串生成 AST,然后对 AST 继续进行转变最后再生成新的代码,项目越大,转换代码越多,效率就越低。当然了,这是可以优化的。
首先我们优化 Loader 的文件搜索范围
module.exports = {
module: {
rules: [
{
// js 文件才使用 babel
test: /\.js$/,
loader: 'babel-loader',
// 只在 src 文件夹下查找
include: [resolve('src')],
// 不会去查找的路径
exclude: /node_modules/
}
]
}
}
复制代码
对于 Babel 来说,希望只作用在 JS 代码上的,然后 node_modules
中使用的代码都是编译过的,所以完全没有必要再去处理一遍。
当然这样做还不够,还可以将 Babel 编译过的文件缓存起来,下次只需要编译更改过的代码文件即可,这样可以大幅度加快打包时间
loader: 'babel-loader?cacheDirectory=true'
复制代码
(2)HappyPack
受限于 Node 是单线程运行的,所以 Webpack 在打包的过程中也是单线程的,特别是在执行 Loader 的时候,长时间编译的任务很多,这样就会导致等待的情况。
HappyPack 可以将 Loader 的同步执行转换为并行的,这样就能充分利用系统资源来加快打包效率了
module: {
loaders: [
{
test: /\.js$/,
include: [resolve('src')],
exclude: /node_modules/,
// id 后面的内容对应下面
loader: 'happypack/loader?id=happybabel'
}
]
},
plugins: [
new HappyPack({
id: 'happybabel',
loaders: ['babel-loader?cacheDirectory'],
// 开启 4 个线程
threads: 4
})
]
复制代码
(3)DllPlugin
DllPlugin 可以将特定的类库提前打包然后引入。这种方式可以极大的减少打包类库的次数,只有当类库更新版本才有需要重新打包,并且也实现了将公共代码抽离成单独文件的优化方案。DllPlugin 的使用方法如下:
// 单独配置在一个文件中
// webpack.dll.conf.js
const path = require('path')
const webpack = require('webpack')
module.exports = {
entry: {
// 想统一打包的类库
vendor: ['react']
},
output: {
path: path.join(__dirname, 'dist'),
filename: '[name].dll.js',
library: '[name]-[hash]'
},
plugins: [
new webpack.DllPlugin({
// name 必须和 output.library 一致
name: '[name]-[hash]',
// 该属性需要与 DllReferencePlugin 中一致
context: __dirname,
path: path.join(__dirname, 'dist', '[name]-manifest.json')
})
]
}
复制代码
然后需要执行这个配置文件生成依赖文件,接下来需要使用 DllReferencePlugin
将依赖文件引入项目中
// webpack.conf.js
module.exports = {
// ...省略其他配置
plugins: [
new webpack.DllReferencePlugin({
context: __dirname,
// manifest 就是之前打包出来的 json 文件
manifest: require('./dist/vendor-manifest.json'),
})
]
}
复制代码
(4)代码压缩
在 Webpack3 中,一般使用 UglifyJS
来压缩代码,但是这个是单线程运行的,为了加快效率,可以使用 webpack-parallel-uglify-plugin
来并行运行 UglifyJS
,从而提高效率。
在 Webpack4 中,不需要以上这些操作了,只需要将 mode
设置为 production
就可以默认开启以上功能。代码压缩也是我们必做的性能优化方案,当然我们不止可以压缩 JS 代码,还可以压缩 HTML、CSS 代码,并且在压缩 JS 代码的过程中,我们还可以通过配置实现比如删除 console.log
这类代码的功能。
(5)其他
可以通过一些小的优化点来加快打包速度
resolve.extensions
:用来表明文件后缀列表,默认查找顺序是 ['.js', '.json']
,如果你的导入文件没有添加后缀就会按照这个顺序查找文件。我们应该尽可能减少后缀列表长度,然后将出现频率高的后缀排在前面
resolve.alias
:可以通过别名的方式来映射一个路径,能让 Webpack 更快找到路径
module.noParse
:如果你确定一个文件下没有其他依赖,就可以使用该属性让 Webpack 不扫描该文件,这种方式对于大型的类库很有帮助
一般如何产生闭包
如何防御 XSS 攻击?
可以看到 XSS 危害如此之大, 那么在开发网站时就要做好防御措施,具体措施如下:
CSP 指的是内容安全策略,它的本质是建立一个白名单,告诉浏览器哪些外部资源可以加载和执行。我们只需要配置规则,如何拦截由浏览器自己来实现。
通常有两种方式来开启 CSP,一种是设置 HTTP 首部中的 Content-Security-Policy,一种是设置 meta 标签的方式
Loader 和 Plugin 有什么区别
Loader:直译为"加载器"。Webpack 将一切文件视为模块,但是 webpack 原生是只能解析 js 文件,如果想将其他文件也打包的话,就会用到loader
。 所以 Loader 的作用是让 webpack 拥有了加载和解析非 JavaScript 文件的能力。 Plugin:直译为"插件"。Plugin 可以扩展 webpack 的功能,让 webpack 具有更多的灵活性。 在 Webpack 运行的生命周期中会广播出许多事件,Plugin 可以监听这些事件,在合适的时机通过 Webpack 提供的 API 改变输出结果。
vue 实现双向数据绑定原理是什么?
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>Document</title>
</head>
<body>
<script src="https://cdn.bootcss.com/vue/2.5.16/vue.js"></script>
<!-- 引入vue文件 -->
<div id="box">
<new-input v-bind:name.sync="name"></new-input>
{{name}}
<!-- 小胡子语法 -->
<input type="text" v-model="name" />
</div>
<script>
Vue.component("new-input", { props: ["name"], data: function () { return { newName: this.name, }; }, template: `<label><input type="text" @keyup="changgeName" v-model="newName" /> 你的名字:</label>`, // 模板字符串
methods: { changgeName: function () { this.$emit("update:name", this.newName); }, }, watch: { name: function (v) { this.newName = v; }, }, // 监听
}); new Vue({ el: "#box", //挂载实例
data: { name: "nick", }, //赋初始值
}); </script>
</body>
</html>
复制代码
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>Document</title>
</head>
<body>
<input type="text" v-mode="msg" />
<p v-mode="msg"></p>
<script>
const data = { msg: "你好", }; const input = document.querySelector("input"); const p = document.querySelector("p"); input.value = data.msg; p.innerHTML = data.msg; //视图变数据跟着变
input.addEventListener("input", function () { data.msg = input.value; }); //数据变视图变
let temp = data.msg; Object.defineProperty(data, "msg", { get() { return temp; }, set(value) { temp = value; //视图修改
input.value = temp; p.innerHTML = temp; }, }); data.msg = "小李"; </script>
</body>
</html>
复制代码
数组扁平化
ES5 递归写法 —— isArray()、concat()
function flat11(arr) {
var res = [];
for (var i = 0; i < arr.length; i++) {
if (Array.isArray(arr[i])) {
res = res.concat(flat11(arr[i]));
} else {
res.push(arr[i]);
}
}
return res;
}
复制代码
如果想实现第二个参数(指定“拉平”的层数),可以这样实现,后面的几种可以自己类似实现:
function flat(arr, level = 1) {
var res = [];
for(var i = 0; i < arr.length; i++) {
if(Array.isArray(arr[i]) || level >= 1) {
res = res.concat(flat(arr[i]), level - 1);
}
else {
res.push(arr[i]);
}
}
return res;
}
复制代码
ES6 递归写法 — reduce()、concat()、isArray()
function flat(arr) {
return arr.reduce(
(pre, cur) => pre.concat(Array.isArray(cur) ? flat(cur) : cur), []
);
}
复制代码
ES6 迭代写法 — 扩展运算符(...)、some()、concat()、isArray()
ES6 的扩展运算符(...) 只能扁平化一层
function flat(arr) {
return [].concat(...arr);
}
复制代码
全部扁平化:遍历原数组,若arr
中含有数组则使用一次扩展运算符,直至没有为止。
function flat(arr) {
while(arr.some(item => Array.isArray(item))) {
arr = [].concat(...arr);
}
return arr;
}
复制代码
toString/join & split
调用数组的 toString()/join()
方法(它会自动扁平化处理),将数组变为字符串然后再用 split
分割还原为数组。由于 split
分割后形成的数组的每一项值为字符串,所以需要用一个map
方法遍历数组将其每一项转换为数值型。
function flat(arr){
return arr.toString().split(',').map(item => Number(item));
// return arr.join().split(',').map(item => Number(item));
}
复制代码
使用正则
JSON.stringify(arr).replace(/[|]/g, '')
会先将数组arr
序列化为字符串,然后使用 replace()
方法将字符串中所有的[
或 ]
替换成空字符,从而达到扁平化处理,此时的结果为 arr
不包含 []
的字符串。最后通过JSON.parse()
解析字符串。
function flat(arr) {
return JSON.parse("[" + JSON.stringify(arr).replace(/\[|\]/g,'') + "]");
}
复制代码
类数组转化为数组
类数组是具有 length
属性,但不具有数组原型上的方法。常见的类数组有 arguments
、DOM 操作方法返回的结果(如document.querySelectorAll('div')
)等。
扩展运算符(...)
注意:扩展运算符只能作用于 iterable
对象,即拥有 Symbol(Symbol.iterator)
属性值。
Array.from()
let arr = Array.from(arrayLike);
复制代码
Array.prototype.slice.call()
let arr = Array.prototype.slice.call(arrayLike);
复制代码
Array.apply()
let arr = Array.apply(null, arrayLike);
复制代码
concat + apply
let arr = Array.prototype.concat.apply([], arrayLike);
复制代码
点击刷新按钮或者按 F5、按 Ctrl+F5 (强制刷新)、地址栏回车有什么区别?
点击刷新按钮或者按 F5: 浏览器直接对本地的缓存文件过期,但是会带上 If-Modifed-Since,If-None-Match,这就意味着服务器会对文件检查新鲜度,返回结果可能是 304,也有可能是 200。
用户按 Ctrl+F5(强制刷新): 浏览器不仅会对本地文件过期,而且不会带上 If-Modifed-Since,If-None-Match,相当于之前从来没有请求过,返回结果是 200。
地址栏回车: 浏览器发起请求,按照正常流程,本地检查是否过期,然后服务器检查新鲜度,最后返回内容。
防抖
防抖(debounce
):触发高频事件 N 秒后只会执行一次,如果 N 秒内事件再次触发,则会重新计时。类似王者荣耀的回城功能,你反复触发回城功能,那么只认最后一次,从最后一次触发开始计时。
核心思想:每次事件触发就清除原来的定时器,建立新的定时器。使用 apply 或 call 调用传入的函数。函数内部支持使用 this 和 event 对象;
应用:防抖常应用于用户进行搜索输入节约请求资源,window
触发resize
事件时进行防抖只触发一次。
实现:
function debounce(fn, delay) {
// 利用闭包的原理
let timer = null;
return function(...args){
if(timer) clearTimeout(timer);
timer = setTimeout(() => {
// 改变 this 指向为调用 debounce 所指的对象
fn.call(this, ...args);
// fn.apply(this, args);
}, delay);
}
}
复制代码
怎么解决白屏问题
什么是中间人攻击?如何防范中间人攻击?
中间⼈ (Man-in-the-middle attack, MITM) 是指攻击者与通讯的两端分别创建独⽴的联系, 并交换其所收到的数据, 使通讯的两端认为他们正在通过⼀个私密的连接与对⽅直接对话, 但事实上整个会话都被攻击者完全控制。在中间⼈攻击中,攻击者可以拦截通讯双⽅的通话并插⼊新的内容。
攻击过程如下:
客户端发送请求到服务端,请求被中间⼈截获
服务器向客户端发送公钥
中间⼈截获公钥,保留在⾃⼰⼿上。然后⾃⼰⽣成⼀个伪造的公钥,发给客户端
客户端收到伪造的公钥后,⽣成加密 hash 值发给服务器
中间⼈获得加密 hash 值,⽤⾃⼰的私钥解密获得真秘钥,同时⽣成假的加密 hash 值,发给服务器
服务器⽤私钥解密获得假密钥,然后加密数据传输给客户端
变量提升
函数在运行的时候,会首先创建执行上下文,然后将执行上下文入栈,然后当此执行上下文处于栈顶时,开始运行执行上下文。
在创建执行上下文的过程中会做三件事:创建变量对象,创建作用域链,确定 this 指向,其中创建变量对象的过程中,首先会为 arguments 创建一个属性,值为 arguments,然后会扫码 function 函数声明,创建一个同名属性,值为函数的引用,接着会扫码 var 变量声明,创建一个同名属性,值为 undefined,这就是变量提升。
浅拷贝
// 这里只考虑对象类型
function shallowClone(obj) {
if(!isObject(obj)) return obj;
let newObj = Array.isArray(obj) ? [] : {};
// for...in 只会遍历对象自身的和继承的可枚举的属性(不含 Symbol 属性)
for(let key in obj) {
// obj.hasOwnProperty() 方法只考虑对象自身的属性
if(obj.hasOwnProperty(key)) {
newObj[key] = obj[key];
}
}
return newObj;
}
复制代码
setTimeout 模拟 setInterval
描述:使用setTimeout
模拟实现setInterval
的功能。
实现:
const mySetInterval(fn, time) {
let timer = null;
const interval = () => {
timer = setTimeout(() => {
fn(); // time 时间之后会执行真正的函数fn
interval(); // 同时再次调用interval本身
}, time)
}
interval(); // 开始执行
// 返回用于关闭定时器的函数
return () => clearTimeout(timer);
}
// 测试
const cancel = mySetInterval(() => console.log(1), 400);
setTimeout(() => {
cancel();
}, 1000);
// 打印两次1
复制代码
代码输出结果
var a = 1;
function printA(){
console.log(this.a);
}
var obj={
a:2,
foo:printA,
bar:function(){
printA();
}
}
obj.foo(); // 2
obj.bar(); // 1
var foo = obj.foo;
foo(); // 1
复制代码
输出结果: 2 1 1
解析:
obj.foo(),foo 的 this 指向 obj 对象,所以 a 会输出 2;
obj.bar(),printA 在 bar 方法中执行,所以此时 printA 的 this 指向的是 window,所以会输出 1;
foo(),foo 是在全局对象中执行的,所以其 this 指向的是 window,所以会输出 1;
原型修改、重写
function Person(name) {
this.name = name
}
// 修改原型
Person.prototype.getName = function() {}
var p = new Person('hello')
console.log(p.__proto__ === Person.prototype) // true
console.log(p.__proto__ === p.constructor.prototype) // true
// 重写原型
Person.prototype = {
getName: function() {}
}
var p = new Person('hello')
console.log(p.__proto__ === Person.prototype) // true
console.log(p.__proto__ === p.constructor.prototype) // false
复制代码
可以看到修改原型的时候 p 的构造函数不是指向 Person 了,因为直接给 Person 的原型对象直接用对象赋值时,它的构造函数指向的了根构造函数 Object,所以这时候p.constructor === Object
,而不是p.constructor === Person
。要想成立,就要用 constructor 指回来:
Person.prototype = {
getName: function() {}
}
var p = new Person('hello')
p.constructor = Person
console.log(p.__proto__ === Person.prototype) // true
console.log(p.__proto__ === p.constructor.prototype) // true
复制代码
图片懒加载
与普通的图片懒加载不同,如下这个多做了 2 个精心处理:
图片全部加载完成后移除事件监听;
加载完的图片,从 imgList 移除;
let imgList = [...document.querySelectorAll('img')]
let length = imgList.length
// 修正错误,需要加上自执行
- const imgLazyLoad = function() {
+ const imgLazyLoad = (function() {
let count = 0
return function() {
let deleteIndexList = []
imgList.forEach((img, index) => {
let rect = img.getBoundingClientRect()
if (rect.top < window.innerHeight) {
img.src = img.dataset.src
deleteIndexList.push(index)
count++
if (count === length) {
document.removeEventListener('scroll', imgLazyLoad)
}
}
})
imgList = imgList.filter((img, index) => !deleteIndexList.includes(index))
}
- }
+ })()
// 这里最好加上防抖处理
document.addEventListener('scroll', imgLazyLoad)
复制代码
实现 LazyMan
题目描述:
实现一个LazyMan,可以按照以下方式调用:
LazyMan(“Hank”)输出:
Hi! This is Hank!
LazyMan(“Hank”).sleep(10).eat(“dinner”)输出
Hi! This is Hank!
//等待10秒..
Wake up after 10
Eat dinner~
LazyMan(“Hank”).eat(“dinner”).eat(“supper”)输出
Hi This is Hank!
Eat dinner~
Eat supper~
LazyMan(“Hank”).eat(“supper”).sleepFirst(5)输出
//等待5秒
Wake up after 5
Hi This is Hank!
Eat supper
复制代码
实现代码如下:
class _LazyMan {
constructor(name) {
this.tasks = [];
const task = () => {
console.log(`Hi! This is ${name}`);
this.next();
};
this.tasks.push(task);
setTimeout(() => {
// 把 this.next() 放到调用栈清空之后执行
this.next();
}, 0);
}
next() {
const task = this.tasks.shift(); // 取第一个任务执行
task && task();
}
sleep(time) {
this._sleepWrapper(time, false);
return this; // 链式调用
}
sleepFirst(time) {
this._sleepWrapper(time, true);
return this;
}
_sleepWrapper(time, first) {
const task = () => {
setTimeout(() => {
console.log(`Wake up after ${time}`);
this.next();
}, time * 1000);
};
if (first) {
this.tasks.unshift(task); // 放到任务队列顶部
} else {
this.tasks.push(task); // 放到任务队列尾部
}
}
eat(name) {
const task = () => {
console.log(`Eat ${name}`);
this.next();
};
this.tasks.push(task);
return this;
}
}
function LazyMan(name) {
return new _LazyMan(name);
}
复制代码
对虚拟 DOM 的理解
虚拟dom从来不是用来和直接操作dom对比的
,它们俩最终殊途同归。虚拟dom只不过是局部更新的一个环节而已
,整个环节的对比对象是全量更新。虚拟 dom 对于 state=UI 的意义是,虚拟 dom 使 diff 成为可能(理论上也可以直接用 dom 对象 diff,但是太臃肿),促进了新的开发思想,又不至于性能太差。但是性能再好也不可能好过直接操作 dom,人脑连 diff 都省了。还有一个很重要的意义是,对视图抽象,为跨平台助力
其实我最终希望你明白的事情只有一件:虚拟 DOM 的价值不在性能,而在别处
。因此想要从性能角度来把握虚拟 DOM 的优势,无异于南辕北辙。偏偏在面试场景下,10 个人里面有 9 个都走这条歧路,最后 9 个人里面自然没有一个能自圆其说,实在让人惋惜。
评论