写点什么

基于 k6 和 python 进行自动化性能测试

  • 2023-06-25
    广东
  • 本文字数:3069 字

    阅读完需:约 10 分钟

基于k6和python进行自动化性能测试

本文分享自华为云社区《基于k6和python进行自动化性能测试》,作者: 风做了云的梦。


当我们开发完成一个应用程序时,往往需要对其进行性能测试,以帮助我们更好的优化程序以及发现程序中的一些 bug。在性能测试中,达到相应的性能指标对于一个软件来说十分重要,在本文中,将介绍一种现代化性能测试工具 k6。


k6 是一个开源工具,基于 JavaScript 可以编写 k6 的测试脚本,测试 Web 应用程序以及 API 的性能,支持 HTTP 等多种协议,可以很好地模拟各种高负载场景,充分验证程序稳定性和性能。k6 支持 Linux、MacOS 等多个平台,通过 k6 官网根据提示即可在各个平台快速安装 k6,终端输入 k6 version 出现如下显示说明安装成功。



以下是一个简单的 k6 测试脚本,通过 k6 的 HTTP API 模拟 Get 请求,并且休眠一秒钟:K


import http from 'k6/http';
import { sleep } from 'k6';
export default function () {
http.get('https://test-api.com');
sleep(1);
}
复制代码


通过执行下面这行代码,运行脚本,即可对服务完成测试。


k6 run test-script.js
复制代码


k6 提供了丰富的功能,以下是 k6 常用的一些 API,具体可以参考官网文档介绍:


- http.get(url, [options]):发送GET请求。
- http.post(url, body, [options]):发送POST请求。
- check(res, checks):检查响应是否符合预期。
- group(name, func):将一组请求分组并统计性能指标。
- sleep(duration):休眠指定的时间。
复制代码


k6 的测试结果包括以下一些指标,可以根据这些指标,更好的优化程序。


- VUs:虚拟用户的数量。
- Iterations:迭代次数。
- RPS:每秒钟的请求数。
- Duration:测试持续时间。
- Data Sent/Received:发送和接收的数据量。
- Checks:检查的数量。
- Status codes:响应状态码的数量。
- Errors:错误的数量。
- Latency distribution:延迟分布。
复制代码


通过 Python 和 k6 你可以更加高效的完成符合自己要求的自动化测试,Python 可以提供非常多的工具库,用来收集处理 k6 返回的结果。 我们可以编写以下 k6 测试脚本,并且通过 Python 去执行它,相关注释我已经标注出来,在 handleSummary 函数中,我们可以通过 metrics 来获取各种测试信息,具体如代码所示,可以参考官网关于 metrics 的介绍,同时自定义环境变量的使用也十分方便,可以参考代码中的使用方式。


import http from 'k6/http';
import { check, sleep} from 'k6';
import {Rate} from 'k6/metrics';
export default function() {
#post请求所需要的body体
let requestBody = {
"xxx":[
"xxxxx"
],
"xxxx": __ENV.MyVar # MyVar为自定义的环境变量,可以通过__ENV调用,在执行脚本时可直接通过MyVar=xxx传值
};
#url
const url = 'http://example.com';
const payload = JSON.stringify(requestBody);
const params = {
headers: {
'Content-Type': 'application/json',
},
timeout: '100s' #每个请求的超时时间
};
let res = http.post(url, payload, params);
#检测结果是否是200OK
check(res, { 'status is 200': (r) => r.status === 200 });
}
export function handleSummary(data) {
#通过data.metrics中的字段可以获取你想要的一些信息,例如每个请求的持续时间和吞吐量
const time = `${data.metrics.http_req_duration.values.avg.toFixed(3)}`;
const rps = `${data.metrics.http_reqs.values.rate.toFixed(3)}`;
const res = `${time} ${rps}`;
console.log(res); # 利用console.log可以将内容打印到控制台
return {stdout : res}; #输出到标准输出
}
复制代码


如下是一个 Python 代码示例,相关代码已经注释,通过 Python 中的 subprocess 模块执行 k6 脚本,并且捕获 k6 脚本的输出,通过 pandas 库进行整理输出到 excel 中。还可以通过 argparse 库解析命令行参数传入 k6 脚本中,更加灵活,高效。


# -*- coding: utf-8 -*-
import subprocess
from alive_progress import alive_bar # 非常丰富的进度条工具库
from tqdm import tqdm # 进度条工具库
import pandas as pd # 可以用来处理文本excel,csv等
from collections import OrderedDict
import argparse # 用来解析命令行参数
import time
print('测试时间 : ', time.strftime('%b %d %Y %H:%M:%S', time.gmtime(time.time())))
print("************开始测试啦! 祈祷不出错!**************")
# 需要测试的测试语句集合
test_examples = [
"aaaaaaa",
"bbbbbbb",
"ccccccc"
]
dataMap = {'test': test_examples}
parser = argparse.ArgumentParser()
parser.add_argument("-d", default="60s", help="duration time", dest="duration_time") #解析命令行参数,控制测试时间
args = parser.parse_args()
print("每条语句测试时间 : ", args.duration_time)
vus = ['10', '20', '30', '40'] # 并发数集合 ,分别测试并发数为10,20,30,40的场景
cols_name = ['1-avg/ms', '1-rps/s', '10-avg/ms', '10-rps/s','20-avg/ms', '20-rps/s','50-avg/ms', '50-rps/s'] # excel的列名
# 循环测试,可以将多个需要测试的语句集合放入到dataMap中
for (name, data) in dataMap.items():
print("当前测试的项目为 :", name)
res = OrderedDict()
res['test_examples'] = []
for n in cols_name:
res[n] = []
df = pd.DataFrame(res)
excel_name = name + ".xlsx"
df.to_excel(excel_name, index=False)
for query in data:
print("当前测试语句为 :", query)
origin = pd.read_excel(excel_name)
with alive_bar(len(vus)) as bar:
temp_dict = {}
temp_dict['test_examples'] = query
for vu in vus:
keyRps = vu + '-rps/s'
keyTime = vu + '-avg/ms'
MyVar='MyVar=' + query
#通过Popen执行k6脚本,并且捕获它的标准输出
process = subprocess.Popen(['k6', 'run', '--quiet', 'script.js', '--env', MyVar, '--vus', vu, '--duration', args.duration_time], stdout=subprocess.PIPE, stderr=subprocess.PIPE)
result = process.stdout.read()
temp = result.split()
temp_dict[keyTime] = temp[0].decode();
temp_dict[keyRps] = temp[1].decode();
print("并发:", vu, temp[0].decode(), temp[1].decode())
bar()
#将脚本输出写到excel
save_data = origin.append(temp_dict, ignore_index=True)
save_data.to_excel(excel_name, index=False)
复制代码


执行此 Python 脚本,可以得到类似以下输出:



参考链接:


1、k6 官网文档链接:https://k6.io/docs/

2、k6 安装链接:https://k6.io/docs/get-started/installation/

号外



7 月 7 日,华为开发者大会 2023 ( Cloud )将拉开帷幕,并将在国内 30 多个城市、海外 10 多个国家开设分会场,诚邀您参加这场不容错过的年度开发者盛会,让我们一起开启探索之旅!


我们将携手开发者、客户、合作伙伴,为您呈现华为云系列产品服务与丰富的创新实践,并与您探讨 AI、大数据、数据库、PaaS、aPaaS、媒体服务、云原生、安全、物联网、区块链、开源等技术话题,展开全面深入的交流。


大会将汇聚全球科学家、行业领袖、技术专家、社区大咖,开设 200 多场开发者专题活动,为全球开发者提供面对面交流与合作的机会,共同探讨技术创新和业务发展。


大会官网:https://developer.huaweicloud.com/HDC.Cloud2023.html


参会购票:https://www.vmall.com/product/10086352254099.html?cid= 211761


点击参与开发者社区活动,观赏技术大咖秀、玩转技术梦工厂,有机会赢取 4000 元开发者礼包!

欢迎关注“华为云开发者联盟”公众号,获取大会议程、精彩活动和前沿干货。


点击关注,第一时间了解华为云新鲜技术~

发布于: 刚刚阅读数: 3
用户头像

提供全面深入的云计算技术干货 2020-07-14 加入

生于云,长于云,让开发者成为决定性力量

评论

发布
暂无评论
基于k6和python进行自动化性能测试_前端_华为云开发者联盟_InfoQ写作社区