以 DOTA 遥感影像数据集为例,选用 R3DET 算法为例子
基本修改
下载源码:github:https://github.com/Thinklab-SJTU/R3Det_Tensorflow
git clone https://github.com/Thinklab-SJTU/R3Det_Tensorflow.git
根据他的readme可以很快的运行成功例如:
先下载预训练权重,推荐下载resnet101(见readme)
然后编译源码:建议在ubuntu做,若是没有环境,那就在阿里云上走,那里可以直接做,环境搭好了,见此篇文章:https://mp.weixin.qq.com/s/8AO0QeLoSmDmD8zHyMWBZQ
cd $PATH_ROOT/libs/box_utils/cython_utils
python setup.py build_ext --inplace (or make)
cd $PATH_ROOT/libs/box_utils/
python setup.py build_ext --inplace
复制代码
编译成功就开始制作数据:
修改一下相对路径和配置
(1) Modify parameters (such as CLASS_NUM, DATASET_NAME, VERSION, etc.) in $PATH_ROOT/libs/configs/cfgs.py
(2) Add category information in $PATH_ROOT/libs/label_name_dict/label_dict.py
(3) Add data_name to $PATH_ROOT/data/io/read_tfrecord_multi_gpu.py
复制代码
第一句话说,修改 cfg.py 中的类别数目,net_name 改成你的 resnet_v1_101
SAVE_WEIGHTS_INTE 是保存次数,改成 10000,代表跑 10000 次就保存参数,正常需要跑 10w 次以上
模型需要 9GB 显存,不足的可以到阿里云服务器。
把那个 gpu 启动改一下,改成单卡:
GPU_GROUP = "0"
NUM_GPU = 0
第二句话说修改 label_dict.py 就是把你的 label 名字改掉(他原本是 DOTA 的数据),如果你的数据与 DOTA 类似,那么可以改 86 那一串为:
elif cfgs.DATASET_NAME.startswith('DOTA'):
NAME_LABEL_MAP = {
'0': 0,
'1': 1,
'2': 2,
'3': 3,
'4': 4,
'5': 5
}
复制代码
类别(左边)+类别号(右边)
第三句话说:read_tfrecord_multi_gpu.py 中添加名字,这里如果你与 DOTA 一致,就不用改。
制作数据
请注意,这是一个数据集切割代码,因为原数据尺寸过大,使用这个之前:
你的数据路径,与保存结果数据路径建议写绝对路径,前三行要能找到你的数据集,最后一行是保存路径,建议后者与我一致。220 多行,将你的数据路径写好(建议写绝对路径,因为源码路径有些混);
以及将需要的 tif 格式是否改成 jpg,需要你决定。
raw_data = r'D:\Rocket Army\Rocket_Four\R3Det_Tensorflow-master\data\yangxue\dataset\DOTA\trainval/'
raw_images_dir = os.path.join(raw_data, 'images', 'images')
raw_label_dir = os.path.join(raw_data, 'labelTxt', 'labelTxt')
save_dir = r'D:\Rocket Army\Rocket_Four\R3Det_Tensorflow-master\data\yangxue\dataset\DOTA\DOTA1.0\trainval/'
复制代码
将 data/io/data_crop .py 改一下:
class_list 改成你的类别例如:
class_list = ['0', '1', '2', '3', '4', '5']
另外我 data 下的文件路径与源码一致,可能还有验证集和测试集。
cd $PATH_ROOT/data/io/DOTA
python data_crop.py
通过你数据和 xml,转换成 tf_record
cd $PATH_ROOT/data/io/
python convert_data_to_tfrecord.py
复制代码
在代码中顶部修改一下:VOCdata 的绝对路径。
tf.app.flags.DEFINE_string('VOC_dir', 'D:\Rocket Army\Rocket_Four\R3Det_Tensorflow-master\data/yangxue/dataset/DOTA/DOTA1.0/trainval', 'Voc dir')
tf.app.flags.DEFINE_string('xml_dir', 'labeltxt', 'xml dir')
tf.app.flags.DEFINE_string('image_dir', 'images', 'image dir')
tf.app.flags.DEFINE_string('save_name', 'train', 'save name')
tf.app.flags.DEFINE_string('save_dir', '../tfrecord/', 'save name')
tf.app.flags.DEFINE_string('img_format', '.png', 'format of image')
tf.app.flags.DEFINE_string('dataset', 'DOTA', 'dataset')
复制代码
然后会生成上百 mb 甚至几 G 的 tfrecord。
你有了这个,就可以不需要 jpg,xml 了,数据和标签已经存在了 tfrecord 中。
开始训练
建议在 327 行加个异常处理。我偶然会训练了很久报错,不过可能是我个人原因导致的。
_, global_stepnp = sess.run([train_op, global_step])
1
在这异常处理,包围这一行。然后建议在终端运行,我在 notebook 的 IDE 上显示不太好,终端完美运行。
检测
cd $PATH_ROOT/tools
python test_dota_r3det_ms.py --test_dir='/PATH/TO/IMAGES/'
--gpus=0,1,2,3,4,5,6,7
-ms (multi-scale testing, optional)
-s (visualization, optional)
复制代码
以 DOTA 数据为演示:
原图:仔细看左上角
评论