一、说明
ThreadPoolExecutor
二、理解
shutdown()
public void shutdown() { // 上锁确保只有一个线程执行此操作 final ReentrantLock mainLock = this.mainLock; mainLock.lock(); try { // 检查是否有权限关闭线程池以和中断线程 checkShutdownAccess(); // 将线程池状态设置为SHUTDOWN advanceRunState(SHUTDOWN); // 中断所有空闲线程 interruptIdleWorkers(); // 用于取消延时任务 onShutdown(); // hook for ScheduledThreadPoolExecutor } finally { mainLock.unlock(); } // 将线程池置为TERMINATED状态 tryTerminate();}
复制代码
shutdownNow()
public List<Runnable> shutdownNow() { List<Runnable> tasks; // 上锁确保只有一个线程执行此操作 final ReentrantLock mainLock = this.mainLock; mainLock.lock(); try { // 检查是否有权限关闭线程池以和中断线程 checkShutdownAccess(); // 将线程池运行状态置为STOP advanceRunState(STOP); // 中断所有线程 interruptWorkers(); // 将未执行的任务移入列表中 tasks = drainQueue(); } finally { mainLock.unlock(); } // 将线程池置为TERMINATED状态 tryTerminate(); return tasks;}
复制代码
awaitTermination()
在shutdown()调用之后使用,阻塞当前线程,在这之后可以继续提交任务,设置等待超时时间,等待所有任务都执行完成,检查线程池是否终止,如果终止返回 true,否则返回 false,并解除阻塞
如果在超时之前所有任务执行完毕,表示线程池已经终止,返回 true,否则返回 false
如果在shutdown()之前使用,线程池未终止,awaitTermination()锁在等待终止状态,造成死锁
public boolean awaitTermination(long timeout, TimeUnit unit) throws InterruptedException { // 将时间单位转化为纳秒 long nanos = unit.toNanos(timeout); // 上锁确保只有一个线程执行此操作 final ReentrantLock mainLock = this.mainLock; mainLock.lock(); try { // 如果线程池在超池之前终止,返回true while (!runStateAtLeast(ctl.get(), TERMINATED)) { // 超时但是线程池未终止,返回false if (nanos <= 0L) return false; // 实现阻塞 nanos = termination.awaitNanos(nanos); } return true; } finally { mainLock.unlock(); } }
复制代码
线程池的生命周期
// 初始运行状态为RUNNING,线程数为0 private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0)); // COUNT_BITS: 29 private static final int COUNT_BITS = Integer.SIZE - 3; // CAPACITY: 十进制: 536870911 二进制: 00011111111111111111111111111111 private static final int CAPACITY = (1 << COUNT_BITS) - 1;
// runState is stored in the high-order bits // RUNNING: 十进制:-536870912 二进制:11100000000000000000000000000000 private static final int RUNNING = -1 << COUNT_BITS; // SHUTDOWN: 十进制:0 二进制:0 private static final int SHUTDOWN = 0 << COUNT_BITS; // STOP: 十进制:536870912 二进制:00100000000000000000000000000000 private static final int STOP = 1 << COUNT_BITS; // TIDYING: 十进制:1073741824 二进制:01000000000000000000000000000000 private static final int TIDYING = 2 << COUNT_BITS; // TERMINATED: 十进制:1610612736 二进制:01100000000000000000000000000000 private static final int TERMINATED = 3 << COUNT_BITS; // Packing and unpacking ctl 打包和解包ctl // 获取线程池当前状态,CAPACITY取反,高三位都是1,低29位都是0,和ctl进行与运算,获得runState变量 private static int runStateOf(int c) { return c & ~CAPACITY; } // CAPACITY高三位都是0,低29位都是0,和ctl进行与运算获得workerCount变量 private static int workerCountOf(int c) { return c & CAPACITY; } // 初始化ctl变量,runState和workerCount进行或运算后共同存储在一个变量中 private static int ctlOf(int rs, int wc) { return rs | wc; }
复制代码
RUNNING 接收新的任务,并且可执行队列里的任务
SHUTDOWN 停止接收新任务,但可执行队列里的任务
STOP 停止接收新任务,不执行队列里的任务,中断正在执行的任务
TIDYING 所有任务都已终止,线程数为 0,线程池变为 TIDYING 状态,会执行钩子函数 terminated(),钩子方法是指使用一个抽象类实现接口,一个抽象类实现这个接口,需要的方法设置为 abstract,其它设置为空方法
TERMINATED 终止状态,表示线程池已终止,已经执行完 terminated()钩子方法
判断当前线程池运行状态
// 判断线程池当前运行状态是否小于给定值 private static boolean runStateLessThan(int c, int s) { return c < s; } // 判断线程池当前运行状态是否大于等于给定值 private static boolean runStateAtLeast(int c, int s) { return c >= s; } // 判断线程池是否处于RUNNING状态 private static boolean isRunning(int c) { return c < SHUTDOWN; } // 判断线程池是否处于SHUTDOWN状态 public boolean isShutdown() { return ! isRunning(ctl.get()); } // 判断线程池是否处于TERMINATING状态 public boolean isTerminating() { int c = ctl.get(); return ! isRunning(c) && runStateLessThan(c, TERMINATED); } // 判断线程池是否处于TERMINATED状态 public boolean isTerminated() { return runStateAtLeast(ctl.get(), TERMINATED); }
复制代码
运行状态转换关系
三、实现
1.shutdown()
创建一个ShutdownTest类,默认使用ThreadPoolExecutor.AbortPolicy拒绝策略,队列是ArrayBlockingQueue,设置核心线程数最大值为 1,线程池线程数最大值为 2,最大等待时间为 5 秒,等待队列值为 2,提交 8 个任务,在第 5 个任务的时候执行 shutdown()
public class ShutdownTest { public static void main(String[] args) { // 1.创建线程池 ThreadPoolExecutor threadPoolExecutor = new ThreadPoolExecutor(1, 2, 5, TimeUnit.SECONDS, new ArrayBlockingQueue<>(2), Executors.defaultThreadFactory()); // 2.创建线程任务 for (int i = 1; i <= 8; i++) {
// 3.执行任务 System.out.println("执行第"+i+"个任务");
threadPoolExecutor.execute(new runnable("任务"+i)); // 4.获取等待队列 Iterator iterator = threadPoolExecutor.getQueue().iterator(); System.out.print("当前等待队列 "); while (iterator.hasNext()){ runnable thread = (runnable) iterator.next(); System.out.print(thread.name + "\t"); } System.out.print("\n"); System.out.println("--------");
// 5.关闭线程池 if (i == 4) { threadPoolExecutor.shutdown(); System.out.println("线程池已关闭"); } } }
static class runnable implements Runnable{ // 设置任务名 String name; public runnable(String setName) { this.name = setName; } @Override public void run() { try { System.out.println("线程:"+Thread.currentThread().getName() +" 执行: "+name); } catch (Exception e) { e.printStackTrace(); } } }}
复制代码
执行 shutdown(),此时停止接收新任务,已提交的任务会继续执行直到完成,此方法不会阻塞,抛出RejectedExecutionException
如果捕获RejectedExecutionException,可以看到任务被拒绝了
public static void main(String[] args) { // 1.创建线程池 ThreadPoolExecutor threadPoolExecutor = new ThreadPoolExecutor(1, 2, 5, TimeUnit.SECONDS, new ArrayBlockingQueue<>(2), Executors.defaultThreadFactory()); // 2.创建线程任务 for (int i = 1; i <= 8; i++) {
// 3.执行任务 System.out.println("执行第"+i+"个任务"); try { threadPoolExecutor.execute(new runnable("任务"+i)); // 4.获取等待队列 Iterator iterator = threadPoolExecutor.getQueue().iterator(); System.out.print("当前等待队列 "); while (iterator.hasNext()){ runnable thread = (runnable) iterator.next(); System.out.print(thread.name + "\t"); } System.out.print("\n"); System.out.println("--------"); } catch (RejectedExecutionException e) { // 5.捕获拒绝执行策略异常 System.out.println("拒绝执行第" + i + "个任务"); } // 6.关闭线程池 if (i == 4) { threadPoolExecutor.shutdown(); System.out.println("线程池已关闭"); } } }
复制代码
2.shutdownNow()
立即停止线程池,停止接收新任务,中断所有正在执行的任务,停止对等待队列的处理
// 6.关闭线程池 if (i == 4) { threadPoolExecutor.shutdownNow(); System.out.println("线程池已关闭"); }
复制代码
3.awaitTermination()
此方法阻塞,在shutdown()调用之后,停止接收新任务,但是awaitTermination()后可以继续提交,此方法是阻塞的,用来检测 timeout 时间后线程池是否终止,如果停止,则返回 true 并释放锁
public class ShutdownTest { public static void main(String[] args) throws InterruptedException { // 1.创建线程池 ThreadPoolExecutor threadPoolExecutor = new ThreadPoolExecutor(1, 2, 5, TimeUnit.SECONDS, new ArrayBlockingQueue<>(2), Executors.defaultThreadFactory()); // 2.创建线程任务 for (int i = 1; i <= 8; i++) {
// 3.执行任务 System.out.println("执行第"+i+"个任务"); try { threadPoolExecutor.execute(new runnable("任务"+i)); // 4.获取等待队列 Iterator iterator = threadPoolExecutor.getQueue().iterator(); System.out.print("当前等待队列 "); while (iterator.hasNext()){ runnable thread = (runnable) iterator.next(); System.out.print(thread.name + "\t"); } System.out.print("\n"); System.out.println("--------"); } catch (RejectedExecutionException e) { // 5.捕获拒绝执行策略异常 System.out.println("拒绝执行第" + i + "个任务"); } // 6.关闭线程池 if (i == 4) { threadPoolExecutor.shutdown(); while (!threadPoolExecutor.awaitTermination(1, TimeUnit.SECONDS)) { System.out.println("线程池未关闭"); } System.out.println("线程池已经关闭"); } } }
static class runnable implements Runnable{ // 设置任务名 String name; public runnable(String setName) { this.name = setName; } @Override public void run() { try { System.out.println("线程:"+Thread.currentThread().getName() +" 执行: "+name); Thread.sleep(5000); } catch (Exception e) { e.printStackTrace(); } } }}
复制代码
保证了线程池和其他线程的之间的执行顺序
如果 shutdown() 在 awaitTermination()后调用的话,awaitTermination()依然锁在等待终止状态,而 shutdown() 也无法得到锁去让线程池停止,这就形成了死锁
// 6.关闭线程池 if (i == 4) { while (!threadPoolExecutor.awaitTermination(1, TimeUnit.SECONDS)) { System.out.println("线程池未关闭"); } threadPoolExecutor.shutdown(); System.out.println("线程池已经关闭"); }
复制代码
评论