作业二
数据结构
链表(Linked list)是一种常见的基础数据结构,是一种线性表,但是并不会按线性的顺序存储数据,而是在每一个节点里存到下一个节点的指针(Pointer)。由于不必须按顺序存储,链表在插入的时候可以达到O(1)的复杂度,比另一种线性表顺序表快得多,但是查找一个节点或者访问特定编号的节点则需要O(n)的时间,而顺序表相应的时间复杂度分别是O(logn)和O(1)。
单向链表
链表中最简单的一种是单向链表,它包含两个域,一个信息域和一个指针域。这个链接指向列表中的下一个节点,而最后一个节点则指向一个空值。
双向链表
一种更复杂的链表是“双向链表”或“双面链表”。每个节点有两个连接:一个指向前一个节点,(当此“连接”为第一个“连接”时,指向空值或者空列表);而另一个指向下一个节点,(当此“连接”为最后一个“连接”时,指向空值或者空列表)
循环链表
在一个 循环链表中, 首节点和末节点被连接在一起。这种方式在单向和双向链表中皆可实现。要转换一个循环链表,你开始于任意一个节点然后沿着列表的任一方向直到返回开始的节点。再来看另一种方法,循环链表可以被视为“无头无尾”。这种列表很利于节约数据存储缓存, 假定你在一个列表中有一个对象并且希望所有其他对象迭代在一个非特殊的排列下。
红黑树
红黑树是一种含有红黑结点并能自平衡的二叉查找树。它必须满足下面性质:
性质1:每个节点要么是黑色,要么是红色。
性质2:根节点是黑色。
性质3:每个叶子节点(NIL)是黑色。
性质4:每个红色结点的两个子结点一定都是黑色。
性质5:任意一结点到每个叶子结点的路径都包含数量相同的黑结点。
三种操作:左旋、右旋和变色。
左旋:以某个结点作为支点(旋转结点),其右子结点变为旋转结点的父结点,右子结点的左子结点变为旋转结点的右子结点,左子结点保持不变。如图3。
右旋:以某个结点作为支点(旋转结点),其左子结点变为旋转结点的父结点,左子结点的右子结点变为旋转结点的左子结点,右子结点保持不变。如图4。
变色:结点的颜色由红变黑或由黑变红。
评论 (1 条评论)