推荐一款 Python 开源库,技术人必备的造数据神器!
1. 背景
在软件需求、开发、测试过程中,有时候需要使用一些测试数据,针对这种情况,我们一般要么使用已有的系统数据,要么需要手动制造一些数据。由于现在的业务系统数据多种多样,千变万化。在手动制造数据的过程中,可能需要花费大量精力和工作量,此项工作既繁复又容易出错,比如要构造一批用户三要素(姓名、手机号、身份证)、构造一批银行卡数据、或构造一批地址通讯录等。
这时候,人们常常为了偷懒快捷,测试数据大多数可能是类似这样子的:
测试数据中包括了大量的“测试XX”,要么就是随手在键盘上一顿乱敲,都是些无意义的假数据。
你是不是这样做的呢?坦白的说,有过一段时间,笔者偶尔也是这么干的。
但是,细想一下,这样的测试数据,不仅要自己手动敲,还假的不能再假,浪费时间、浪费人力、数据价值低。
而且,部分数据的手工制造还无法保障:比如UUID类数据、MD5、SHA加密类数据等。
为了帮助大家解决这个问题,更多还是提供种一种解决方案或思路,今天给大家分享一款Python造数据利器:Faker库,利用它可以生成一批各种各样的看起来“像真的一样”的假数据。
2. Faker介绍 、安装
2.1 Faker是什么
Faker是一个Python包,主要用来创建伪数据,使用Faker包,无需再手动生成或者手写随机数来生成数据,只需要调用Faker提供的方法,即可完成数据的生成。
项目地址:https://github.com/joke2k/faker
2.2 安装
安装 Faker 很简单,使用 pip 方式安装:
除了pip 安装,也可以通过上方提供的github地址,来下载编译安装。
3. Faker常用使用
3.1 基本用法
Faker 的使用也是很简单的,从 faker 模块中导入类,然后实例化这个类,就可以调用方法使用了:
这里我们造了一个名字和一个地址,由于 Faker 默认是英文数据,所以如果我们需要造其他语言的数据,可以使用 locale参数,例如:
是不是看起来还不错,但是有一点需要注意,这里的地址并不是真实的地址,而是随机组合出来的,也就是将省、市、道路之类的随机组合在一起。
这里介绍几个比较常见的语言代号:
简体中文:zh_CN
繁体中文:zh_TW
美国英文:en_US
英国英文:en_GB
德文:de_DE
日文:ja_JP
韩文:ko_KR
法文:fr_FR
例如将语言修改为繁体中文fake = Faker(locale='zh_TW')
,输出信息为:
3.2 常用函数
除了上述介绍的fake.name
和fake.address
生成姓名和地址两个函数外,常用的faker函数按类别划分有如下一些常用方法。
1、地理信息类
fake.city_suffix():市,县
fake.country():国家
fake.country_code():国家编码
fake.district():区
fake.geo_coordinate():地理坐标
fake.latitude():地理坐标(纬度)
fake.longitude():地理坐标(经度)
fake.postcode():邮编
fake.province():省份
fake.address():详细地址
fake.street_address():街道地址
fake.street_name():街道名
fake.street_suffix():街、路
2、基础信息类
ssn():生成身份证号
bs():随机公司服务名
company():随机公司名(长)
company_prefix():随机公司名(短)
company_suffix():公司性质
creditcardexpire():随机信用卡到期日
creditcardfull():生成完整信用卡信息
creditcardnumber():信用卡号
creditcardprovider():信用卡类型
creditcardsecurity_code():信用卡安全码
job():随机职位
firstnamefemale():女性名
firstnamemale():男性名
lastnamefemale():女姓
lastnamemale():男姓
name():随机生成全名
name_female():男性全名
name_male():女性全名
phone_number():随机生成手机号
phonenumber_prefix():随机生成手机号段
3、计算机基础、Internet信息类
asciicompanyemail():随机ASCII公司邮箱名
ascii_email():随机ASCII邮箱:
company_email():
email():
safe_email():安全邮箱
4、网络基础信息类
domain_name():生成域名
domain_word():域词(即,不包含后缀)
ipv4():随机IP4地址
ipv6():随机IP6地址
mac_address():随机MAC地址
tld():网址域名后缀(.com,.net.cn,等等,不包括.)
uri():随机URI地址
uri_extension():网址文件后缀
uri_page():网址文件(不包含后缀)
uri_path():网址文件路径(不包含文件名)
url():随机URL地址
user_name():随机用户名
image_url():随机URL地址
5、浏览器信息类
chrome():随机生成Chrome的浏览器user_agent信息
firefox():随机生成FireFox的浏览器user_agent信息
internetexplorer():随机生成IE的浏览器useragent信息
opera():随机生成Opera的浏览器user_agent信息
safari():随机生成Safari的浏览器user_agent信息
linuxplatformtoken():随机Linux信息
useragent():随机useragent信息
6、数字类
numerify():三位随机数字
random_digit():0~9随机数
randomdigitnot_null():1~9的随机数
random_int():随机数字,默认0~9999,可以通过设置min,max来设置
random_number():随机数字,参数digits设置生成的数字位数
pyfloat():
left_digits=5 #生成的整数位数,
right_digits=2 #生成的小数位数,
positive=True #是否只有正数
pyint():随机Int数字(参考random_int()参数)
pydecimal():随机Decimal数字(参考pyfloat参数)
7、文本、加密类
pystr():随机字符串
random_element():随机字母
random_letter():随机字母
paragraph():随机生成一个段落
paragraphs():随机生成多个段落,通过参数nb来控制段落数,返回数组
sentence():随机生成一句话
sentences():随机生成多句话,与段落类似
text():随机生成一篇文章(不要幻想着人工智能了,至今没完全看懂一句话是什么意思)
word():随机生成词语
words():随机生成多个词语,用法与段落,句子,类似
binary():随机生成二进制编码
boolean():True/False
language_code():随机生成两位语言编码
locale():随机生成语言/国际 信息
md5():随机生成MD5
null_boolean():NULL/True/False
password():随机生成密码,可选参数:length:密码长度;specialchars:是否能使用特殊字符;digits:是否包含数字;uppercase:是否包含大写字母;lower_case:是否包含小写字母
sha1():随机SHA1
sha256():随机SHA256
uuid4():随机UUID
8、时间信息类
date():随机日期
datebetween():随机生成指定范围内日期,参数:startdate,end_date
datebetweendates():随机生成指定范围内日期,用法同上
date_object():随机生产从1970-1-1到指定日期的随机日期。
date_time():随机生成指定时间(1970年1月1日至今)
datetimead():生成公元1年到现在的随机时间
datetimebetween():用法同dates
future_date():未来日期
future_datetime():未来时间
month():随机月份
month_name():随机月份(英文)
past_date():随机生成已经过去的日期
past_datetime():随机生成已经过去的时间
time():随机24小时时间
timedelta():随机获取时间差
time_object():随机24小时时间,time对象
time_series():随机TimeSeries对象
timezone():随机时区
unix_time():随机Unix时间
year():随机年份
9、python 相关方法
profile():随机生成档案信息
simple_profile():随机生成简单档案信息
pyiterable()
pylist()
pyset()
pystruct()
pytuple()
pydict()
可以用dir(fake),看Faker库都可以fake哪些数据,目前Faker支持近300种数据,此外还支持自己进行扩展。
有了这些生成数据函数之后用fake对象就可以调用不同的方法生成各种数据了。
3.3 常用数据场景
1、构造通讯录记录
2、构造信用卡数据
3、生成个人档案信息
4、生成Python相关结构信息
4. Faker常用使用
如果这些数据还不够生成数据使用,Faker还支持创建自定义的Provider生成数据。
是不是十分简单,以后常用的数据就可以自己创建Provider用自动化的方法生成了,不仅节省了时间,复用性也变高了。
5. 总结
这些只是其中的一些常见的数据,Faker 可以造的数据远不止这些类型。相信通过本文的介绍,大家应该对 Faker 不陌生了吧。以后在需要造数据的时候,一定要想起 Faker 这个利器哦!
此外,作为一个开源的库,Faker的源码是非常值得研究的,也是Python新手可以用来练开源项目的利器。
版权声明: 本文为 InfoQ 作者【狂师】的原创文章。
原文链接:【http://xie.infoq.cn/article/eed08f7131df5496d49d192e1】。文章转载请联系作者。
评论