代码 or 指令,浅析 ARM 架构下的函数的调用过程
摘要:linux 程序运行的状态以及如何推导调用栈。
1、背景知识
1、ARM64 寄存器介绍:
2、STP 指令详解(ARMV8 手册):
我们先看一下指令格式(64bit),以及指令对于寄存机执行结果的影响
类型 1、STP <Xt1>, <Xt2>, [<Xn|SP>], #<imm>
将 Xt1 和 Xt2 存入 Xn|SP 对应的地址内存中,然后,将 Xn|SP 的地址变更为 Xn|SP + imm 偏移量的新地址
类型 2、STP <Xt1>, <Xt2>, [<Xn|SP>, #<imm>]!
将 Xt1 和 Xt2 存入 Xn|SP 的地址自加 imm 对应的地址内存中,然后,将 Xn|SP 的地址变更为 Xn|SP + imm 的 offset 偏移量后的新地址
类型 3、STP <Xt1>, <Xt2>, [<Xn|SP>{, #<imm>}]
将 Xt1 和 Xt2 存入 Xn|SP 的地址自加 imm 对应的地址内存中
手册中有三种操作码,我们只讨论程序中涉及的后两种
Pseudocode 如下:
Shared decode for all encodings
integer n = UInt(Rn);
integer t = UInt(Rt);
integer t2 = UInt(Rt2);
if L:opc<0> == '01' || opc == '11' then UNDEFINED;
integer scale = 2 + UInt(opc<1>);
integer datasize = 8 << scale;
bits(64) offset = LSL(SignExtend(imm7, 64), scale);
boolean tag_checked = wback || n != 31;
Operation for all encodings
bits(64) address;
bits(datasize) data1;
bits(datasize) data2;
constant integer dbytes = datasize DIV 8;
boolean rt_unknown = FALSE;
if HaveMTEExt() then
SetNotTagCheckedInstruction(!tag_checked);
if wback && (t == n || t2 == n) && n != 31 then
Constraint c = ConstrainUnpredictable();
assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of
when Constraint_NONE rt_unknown = FALSE; // value stored is pre-writeback
when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();
if n == 31 then
CheckSPAlignment();
address = SP[];
else
address = X[n];
if !postindex then
address = address + offset;
if rt_unknown && t == n then
data1 = bits(datasize) UNKNOWN;
else
data1 = X[t];
if rt_unknown && t2 == n then
data2 = bits(datasize) UNKNOWN;
else
data2 = X[t2];
Mem[address, dbytes, AccType_NORMAL] = data1;
Mem[address+dbytes, dbytes, AccType_NORMAL] = data2;
if wback then
if postindex then
address = address + offset;
if n == 31 then
SP[] = address;
else
X[n] = address;
红色部分对应推栈的关键逻辑
其他汇编指令含义可自行参考 armv8 手册或者度娘
2、一个例子
熟悉了上面的部分,接下来我们看一个实例:
C 代码如下:
相关的几个函数反汇编如下(和推栈相关的一般只有入口两条指令):
mainf3f4strlen
我们通过 gdb 运行后,可以看到 strlen 地方会触发 SEGFAULT,引发进程挂掉
上述通过代码编译后,没有 strip,因此 elf 文件是带着符号的
查看运行状态(info register):关注 29、29、30、SP、PC 四个寄存器
一个核心的思想:CPU 执行的是指令而不是 C 代码,函数调用和返回实际是在线程栈上面的压栈和弹栈的过程
接下来我们来看上面的调用关系在当前这个任务栈是如何玩的:
函数调用在栈中的关系(call function 压栈,地址递减;return 弹栈,地址递增):
以下是推栈的过程(划重点)
再回头来看之前的汇编:
mainf3f4strlen
从当前的 sp 开始,frame 0 是 strlen,这块没有开栈,因此上一级的调用函数仍然是 x30,因此推导:frame1 调用为 f3
函数 f3 的起始入口汇编:
(gdb) x/2i f3
0x400600 <f3>: stp x29, x30, [sp,#-48]!
0x400604 <f3+4>: mov x29, sp
可以看到,f3 函数开辟的栈空间为 48 字节,因此,倒推 frame2 的栈顶为当前的 sp + 48 字节:0xfffffffff2c0
(gdb) x/gx 0xfffffffff2c0+8
0xfffffffff2c8: 0x000000000040065c
(gdb) x/i 0x000000000040065c
0x40065c <f4+36>: mov w0, #0x0 // #0
frame2 的函数为 sp+8:0x000000000040065c -> <f4+36>
继续从 sp = 0xfffffffff2c0 倒推 frame1 的函数
函数 f4 的起始入口汇编为:
函数 f3 的起始入口汇编:
(gdb) x/2i f3
0x400600 <f3>: stp x29, x30, [sp,#-48]!
0x400604 <f3+4>: mov x29, sp
可以看到,f3 函数开辟的栈空间为 48 字节,因此,倒推 frame2 的栈顶为当前的 sp + 48 字节:0xfffffffff2c0
(gdb) x/gx 0xfffffffff2c0+8
0xfffffffff2c8: 0x000000000040065c
(gdb) x/i 0x000000000040065c
0x40065c <f4+36>: mov w0, #0x0 // #0
frame2 的函数为 sp+8:0x000000000040065c -> <f4+36>
继续从 sp = 0xfffffffff2c0 倒推 frame1 的函数
函数 f4 的起始入口汇编为:
(gdb) x/2i f4
0x400638 <f4>: stp x29, x30, [sp,#-48]!
0x40063c <f4+4>: mov x29, sp
可以看到,f4 函数开辟的栈空间也是为 48 字节,因此,倒推 frame3 的栈顶为当前的 0xfffffffff2c0 + 48 字节:0xfffffffff2f0
frame2 的函数为 0xfffffffff2c0 + 8:0x000000000040065c -> <f4+36>
(gdb) x/gx 0xfffffffff2f0+8
0xfffffffff2f8: 0x0000000000400684
(gdb) x/i 0x0000000000400684
0x400684 <main+28>: mov w0, #0x0 // #0
因此 frame3 的函数为 main 函数,main 函数对应的栈顶为 0xfffffffff320
至此推导结束(有兴趣的同学可以继续推导,可以看到 libc 如何拉起 main 的过程)
总结:
推栈的关键:
当前的现场
熟悉 cpu 体系架构的开栈的方式
3、实战讲解
现场有如下的 core:可以看到,所有的符号找不到,加载了符号表依然不好使,解析不出来实际的调用栈
(gdb) bt
#0 0x0000ffffaeb067bc in ?? () from /lib64/libc.so.6
#1 0x0000aaaad15cf000 in ?? ()
Backtrace stopped: previous frame inner to this frame (corrupt stack?)
先看 info register,关注 x29、x30、sp、pc 四个寄存器的值
推导任务栈:
先将 sp 内容导出:
下图实际已先将结果标出,我们下面来详细描述如何推导
pc 代表当前执行的函数指令,如果当前指令未开栈,一般情况 x30 代表上一级的 frame 调用当前函数的下一条指令,查看汇编,可以反解为如下函数
(gdb) x/i 0xaaaacd3de4fc
0xaaaacd3de4fc <PGXCNodeConnStr(char const, int, char const, char const, char const, char const, int, char const)+108>: mov x27, x0
找到栈顶函数后,查看该函数的栈操作:
(gdb) x/6i PGXCNodeConnStr
0xaaaacd3de490 <PGXCNodeConnStr(char const, int, char const, char const, char const, char const, int, char const)>: sub sp, sp, #0xd0
0xaaaacd3de494 <PGXCNodeConnStr(char const, int, char const, char const, char const, char const, int, char const)+4>: stp x29, x30, [sp,#80]
0xaaaacd3de498 <PGXCNodeConnStr(char const, int, char const, char const, char const, char const, int, char const)+8>: add x29, sp, #0x50
可以看到,上一级的 frame 存在了当前的 sp + 0xd0 - 0x80 也就是 0xfffec4cebd40 + 0xd0 - 0x80 = 0xfffec4cebd90 的地方,而栈底在 0xfffec4cebd40+ 0xd0 = 0xfffec4cebe10 的地方
因此就找到了下一级的 frame 对应的栈顶和上一级的 LR 返回指令,反解,可以得到函数 build_node_conn_str
(gdb) x/i 0x0000aaaacd414e08
0xaaaacd414e08 <build_node_conn_str(Oid, DatabasePool*)+224>: mov x21, x0
继续重复上述推导,可以看到这个函数 build_node_conn_str 开了 176 字节的栈,
(gdb) x/4i build_node_conn_str
0xaaaacd414d28 <build_node_conn_str(Oid, DatabasePool*)>: stp x29, x30, [sp,#-176]!
0xaaaacd414d2c <build_node_conn_str(Oid, DatabasePool*)+4>: mov x29, sp
因此继续用 0xfffec4cebe10 + 176 = 0xfffec4cebec0
查看调用者 0xfffec4cebe10+8 为 reload_database_pools
继续看 reload_database_pools
(gdb) x/8i reload_database_pools
0xaaaacd4225e8 <reload_database_pools(PoolAgent*)>: sub sp, sp, #0x1c0
0xaaaacd4225ec <reload_database_pools(PoolAgent*)+4>: adrp x5, 0xaaaad15cf000
0xaaaacd4225f0 <reload_database_pools(PoolAgent*)+8>: adrp x3, 0xaaaacf0ed000
0xaaaacd4225f4 <reload_database_pools(PoolAgent*)+12>: adrp x4, 0xaaaaceeed000 <_ZN4llvm18ConvertUTF8toUTF16EPPKhS1_PPtS3_NS_15ConversionFlagsE>
0xaaaacd4225f8 <reload_database_pools(PoolAgent*)+16>: add x3, x3, #0x9e0
0xaaaacd4225fc <reload_database_pools(PoolAgent*)+20>: adrp x1, 0xaaaacf0ee000 <_ZZ25PoolManagerGetConnectionsP4ListS0_E8__func__+24>
0xaaaacd422600 <reload_database_pools(PoolAgent*)+24>: stp x29, x30, [sp,#-96]!
实际开栈 0x220 字节,因此这一层 frame 的栈底为 0xfffec4cebec0 + 0x220 = 0xfffec4cec0e0
因此得到基本的调用关系的结构如下
以上基本可以够用来分析问题了,因此不需要再继续推导
TIPS:arm 架构下一般调用都会使用这种指令,
stp x29, x30, [sp,#immediate]! 有叹号或者无叹号
因此在每一层的 frame 都保存了上一层 frame 的栈顶地址和 LR 指令,通过准确找到底层的 frame 0 栈顶后,就可以快速推导出所有的调用关系(红色虚线圈出来的部分),函数的反解依赖符号表,只要原始的 elf 文件的 symbol 段没有 strip 掉,是都可以找到对应的函数符号(通过 readelf -S 查看即可)
找到 Frame 后,每一层 frame 里面的内容,结合汇编基本就可以用来推导过程变量了
本文分享自华为云社区《代码 or 指令,浅析 ARM 架构下的函数的调用过程》,原文作者:K______。
版权声明: 本文为 InfoQ 作者【华为云开发者社区】的原创文章。
原文链接:【http://xie.infoq.cn/article/ea2b60d30556983481d7fba4a】。文章转载请联系作者。
评论