这里有一个慢 SQL 查询等你来优化
背景
最近工作上遇到一个"神奇"的问题, 或许对大家有帮助, 因此形成本文.
问题大概是, 我有两个表 TableA, TableB, 其中 TableA 表大概百万行级别(存量业务数据), TableB 表几行(新业务场景, 数据还未膨胀起来), 语义上 TableA.columnA = TableB.columnA
, 其中 columnA
上建立了索引, 但查询的时候确巨慢无比, 基本上到 5-6 秒, 明显跟预期不符合.
下面我以一个具体的例子来说明吧, 模拟其中的 SQL 查询场景.
场景重现
user_info
表, 为了场景尽量简单, 我只 mock 了其中的三列数据.
mysql> desc userinfo;+-------+--------------+------+-----+---------+----------------+| Field | Type | Null | Key | Default | Extra |+-------+--------------+------+-----+---------+----------------+| id | int(11) | NO | PRI | NULL | autoincrement || uid | varchar(64) | NO | MUL | NULL | || name | varchar(255) | YES | | NULL | |+-------+--------------+------+-----+---------+----------------+3 rows in set (0.00 sec)
userscore
表, 其中uid
和user
info.uid
语义一致:
mysql> desc userinfo;+-------+--------------+------+-----+---------+----------------+| Field | Type | Null | Key | Default | Extra |+-------+--------------+------+-----+---------+----------------+| id | int(11) | NO | PRI | NULL | autoincrement || uid | varchar(64) | NO | MUL | NULL | || name | varchar(255) | YES | | NULL | |+-------+--------------+------+-----+---------+----------------+3 rows in set (0.00 sec)
其中数据情况如下, 都是很常见的场景.
mysql> select from userscore limit 2;+----+--------------------------------------+-------+| id | uid | score |+----+--------------------------------------+-------+| 5 | 111111111 | 100 || 6 | 55116d58-be26-4eb7-8f7e-bd2d49fbb968 | 100 |+----+--------------------------------------+-------+2 rows in set (0.00 sec)mysql> select from userinfo limit 2;+----+--------------------------------------+-------------+| id | uid | name |+----+--------------------------------------+-------------+| 1 | 111111111 | tanglei || 2 | 55116d58-be26-4eb7-8f7e-bd2d49fbb968 | hudsonemily |+----+--------------------------------------+-------------+2 rows in set (0.00 sec)mysql> select count() from userscore -> union -> select count() from userinfo;+----------+| count(*) |+----------+| 4 || 3000003 |+----------+2 rows in set (1.39 sec)
索引情况是:
mysql> show index from userscore;+------------+------------+-----------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+| Table | Nonunique | Keyname | Seqinindex | Columnname | Collation | Cardinality | Subpart | Packed | Null | Indextype | Comment | Indexcomment |+------------+------------+-----------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+| userscore | 0 | PRIMARY | 1 | id | A | 4 | NULL | NULL | | BTREE | | || userscore | 1 | indexuid | 1 | uid | A | 4 | NULL | NULL | YES | BTREE | | |+------------+------------+-----------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+2 rows in set (0.00 sec)mysql> show index from userinfo;+-----------+------------+-----------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+| Table | Nonunique | Keyname | Seqinindex | Columnname | Collation | Cardinality | Subpart | Packed | Null | Indextype | Comment | Indexcomment |+-----------+------------+-----------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+| userinfo | 0 | PRIMARY | 1 | id | A | 2989934 | NULL | NULL | | BTREE | | || userinfo | 1 | indexuid | 1 | uid | A | 2989934 | NULL | NULL | | BTREE | | |+-----------+------------+-----------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+2 rows in set (0.00 sec)
查询业务场景: 已知
userscore.id
, 需要关联查询对应user
info
的信息, (大家先忽略这个具体业务场景是否合理哈). 那么对应的 SQL 很自然的如下:
mysql> select * from userscore us -> inner join userinfo ui on us.uid = ui.uid -> where us.id = 5;+----+-----------+-------+---------+-----------+---------+| id | uid | score | id | uid | name |+----+-----------+-------+---------+-----------+---------+| 5 | 111111111 | 100 | 1 | 111111111 | tanglei || 5 | 111111111 | 100 | 3685399 | 111111111 | tanglei || 5 | 111111111 | 100 | 3685400 | 111111111 | tanglei || 5 | 111111111 | 100 | 3685401 | 111111111 | tanglei || 5 | 111111111 | 100 | 3685402 | 111111111 | tanglei || 5 | 111111111 | 100 | 3685403 | 111111111 | tanglei |+----+-----------+-------+---------+-----------+---------+6 rows in set (1.18 sec)
请忽略其中的数据, 我刚开始 mock 了 100W, 然后又重复导入了两遍, 因此数据有一些重复. 300W 数据, 最后查询出来也是 1.18 秒. 按道理应该更快的. 老规矩 explain
看看啥情况?
mysql> explain -> select * from userscore us -> inner join userinfo ui on us.uid = ui.uid -> where us.id = 5;+----+-------------+-------+-------+-------------------+---------+---------+-------+---------+-------------+| id | selecttype | table | type | possiblekeys | key | keylen | ref | rows | Extra |+----+-------------+-------+-------+-------------------+---------+---------+-------+---------+-------------+| 1 | SIMPLE | us | const | PRIMARY,indexuid | PRIMARY | 4 | const | 1 | NULL || 1 | SIMPLE | ui | ALL | NULL | NULL | NULL | NULL | 2989934 | Using where |+----+-------------+-------+-------+-------------------+---------+---------+-------+---------+-------------+2 rows in set (0.00 sec)
发现 user_info
表没用上索引, 全表扫描近 300W 数据? 现象是这样, 为什么呢?
你不妨思考一下, 如果你遇到这种场景, 应该怎么去排查?
-----------
我当时也是"一顿操作猛如虎", 然并卵? 尝试了什么多种 sql 写法来完成这个操作.
比如更换Join表的顺序(驱动表/被驱动表)
mysql> explain select * from userinfo ui inner join userscore us on us.uid = ui.uid where us.id = 5;+----+-------------+-------+-------+-------------------+---------+---------+-------+---------+-------------+| id | selecttype | table | type | possiblekeys | key | keylen | ref | rows | Extra |+----+-------------+-------+-------+-------------------+---------+---------+-------+---------+-------------+| 1 | SIMPLE | us | const | PRIMARY,indexuid | PRIMARY | 4 | const | 1 | NULL || 1 | SIMPLE | ui | ALL | NULL | NULL | NULL | NULL | 2989934 | Using where |+----+-------------+-------+-------+-------------------+---------+---------+-------+---------+-------------+2 rows in set (0.00 sec)
再比如用子查询:
mysql> explain select * from userinfo where uid in (select uid from userscore where id = 5);+----+-------------+------------+-------+-------------------+---------+---------+-------+---------+-------------+| id | selecttype | table | type | possiblekeys | key | keylen | ref | rows | Extra |+----+-------------+------------+-------+-------------------+---------+---------+-------+---------+-------------+| 1 | SIMPLE | userscore | const | PRIMARY,indexuid | PRIMARY | 4 | const | 1 | NULL || 1 | SIMPLE | userinfo | ALL | NULL | NULL | NULL | NULL | 2989934 | Using where |+----+-------------+------------+-------+-------------------+---------+---------+-------+---------+-------------+2 rows in set (0.00 sec)
最终, 还是没有结果. 但直接单表查询写 SQL 确能用上索引.
mysql> select from userinfo where uid = '111111111';+---------+-----------+---------+| id | uid | name |+---------+-----------+---------+| 1 | 111111111 | tanglei || 3685399 | 111111111 | tanglei || 3685400 | 111111111 | tanglei || 3685401 | 111111111 | tanglei || 3685402 | 111111111 | tanglei || 3685403 | 111111111 | tanglei |+---------+-----------+---------+6 rows in set (0.01 sec)mysql> explain select from userinfo where uid = '111111111';+----+-------------+-----------+------+---------------+-----------+---------+-------+------+-----------------------+| id | selecttype | table | type | possiblekeys | key | keylen | ref | rows | Extra |+----+-------------+-----------+------+---------------+-----------+---------+-------+------+-----------------------+| 1 | SIMPLE | userinfo | ref | indexuid | indexuid | 194 | const | 6 | Using index condition |+----+-------------+-----------+------+---------------+-----------+---------+-------+------+-----------------------+1 row in set (0.01 sec)
问题解决
尝试更换检索条件, 比如更换 uid 直接关联查询, 索引仍然用不上, 差点放弃了都. 在准备求助 DBA 前, 看了下表的建表语句.
mysql> show create table userinfo;+-----------+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+| Table | Create Table |+-----------+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+| userinfo | CREATE TABLE userinfo ( id int(11) NOT NULL AUTOINCREMENT, uid varchar(64) NOT NULL, name varchar(255) DEFAULT NULL, PRIMARY KEY (id), KEY indexuid (uid) USING BTREE) ENGINE=InnoDB AUTOINCREMENT=3685404 DEFAULT CHARSET=utf8 |+-----------+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+1 row in set (0.00 sec)mysql> show create table userscore;+------------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+| Table | Create Table |+------------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+| userscore | CREATE TABLE userscore ( id int(11) NOT NULL AUTOINCREMENT, uid varchar(64) NOT NULL, score float DEFAULT NULL, PRIMARY KEY (id), KEY indexuid (uid)) ENGINE=InnoDB AUTOINCREMENT=9 DEFAULT CHARSET=utf8mb4 |+------------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+1 row in set (0.00 sec)
完全有理由怀疑因为字符集不一致的问题导致索引失效的问题了.
于是修改了小表(真实线上环境可别乱操作)的字符集与大表一致, 再测试下.
mysql> select from userscore us -> inner join userinfo ui on us.uid = ui.uid -> where us.id = 5;+----+-----------+-------+---------+-----------+---------+| id | uid | score | id | uid | name |+----+-----------+-------+---------+-----------+---------+| 5 | 111111111 | 100 | 1 | 111111111 | tanglei || 5 | 111111111 | 100 | 3685399 | 111111111 | tanglei || 5 | 111111111 | 100 | 3685400 | 111111111 | tanglei || 5 | 111111111 | 100 | 3685401 | 111111111 | tanglei || 5 | 111111111 | 100 | 3685402 | 111111111 | tanglei || 5 | 111111111 | 100 | 3685403 | 111111111 | tanglei |+----+-----------+-------+---------+-----------+---------+6 rows in set (0.00 sec)mysql> explain -> select from userscore us -> inner join userinfo ui on us.uid = ui.uid -> where us.id = 5;+----+-------------+-------+-------+-------------------+-----------+---------+-------+------+-------+| id | selecttype | table | type | possiblekeys | key | keylen | ref | rows | Extra |+----+-------------+-------+-------+-------------------+-----------+---------+-------+------+-------+| 1 | SIMPLE | us | const | PRIMARY,indexuid | PRIMARY | 4 | const | 1 | NULL || 1 | SIMPLE | ui | ref | indexuid | indexuid | 194 | const | 6 | NULL |+----+-------------+-------+-------+-------------------+-----------+---------+-------+------+-------+2 rows in set (0.00 sec)
果然 work 了.
挖掘根因
其实深究原因, 就是网上各种 MySQL军规/规约所提到的, "索引列不要参与计算". 这次这个 case, 如果知道 explain extended + show warnings
这个工具的话, (以前都不知道explain
后面还能加 extended
参数), 可能就尽早"恍然大悟"了. (最新的 MySQL 8.0版本貌似不需要另外加这个关键字).
看下效果. (啊, 我还得把字符集改回去!!!)
mysql> explain extended select from userscore us inner join userinfo ui on us.uid = ui.uid where us.id = 5;+----+-------------+-------+-------+-------------------+---------+---------+-------+---------+----------+-------------+| id | selecttype | table | type | possiblekeys | key | keylen | ref | rows | filtered | Extra |+----+-------------+-------+-------+-------------------+---------+---------+-------+---------+----------+-------------+| 1 | SIMPLE | us | const | PRIMARY,indexuid | PRIMARY | 4 | const | 1 | 100.00 | NULL || 1 | SIMPLE | ui | ALL | NULL | NULL | NULL | NULL | 2989934 | 100.00 | Using where |+----+-------------+-------+-------+-------------------+---------+---------+-------+---------+----------+-------------+2 rows in set, 1 warning (0.00 sec)mysql> show warnings;+-------+------+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+| Level | Code | Message |+-------+------+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+| Note | 1003 | / select#1 */ select '5' AS id,'111111111' AS uid,'100' AS score,test.ui.id AS id,test.ui.uid AS uid,test.ui.name AS name from test.userscore us join test.userinfo ui where (('111111111' = convert(test.ui.uid using utf8mb4))) |+-------+------+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+1 row in set (0.00 sec)
索引列参与计算了, 每次都要根据字符集去转换, 全表扫描, 你说能快得起来么?
至于这个问题为什么会发生? 综合来看, 就是因为历史原因, 老业务场景中的原表是假 utf8
, 新业务新表采用了真 utf8mb4
.
考虑新表的时候, 忽略和原库字符集的比较. 其实, 发现库里面的不同表可能都有不同的字符集, 不同人建的时候可能都依据个人喜好去选择了不同的字符集. 由此可见, 开发规范有多重要.
虽然知道索引列不能参与计算, 但这个场景下都是相同的类型,
varchar(64)
最终查询过程中仍然发生了类型转换. 因此需要把字段字符集不一致等同于字段类型不一致.如果这个 case, 利用
fail-fast
的理念的话, 发现不一致, 直接不让 join 会不会更好? (就像char v.s varchar
不能 join 一样).
留一道思考题
你能解释如下情况吗? 查询结果表现为何不一致? 注意一下 SQL 的执行顺序, 查询优化器工作流程, 以及其中的 Using join buffer (Block Nested Loop), 建议多看看 [MySQL 官方手册](https://dev.mysql.com/doc/refman/5.6/en/) 深入背后原理.
mysql> select from userinfo ui -> inner join userscore us on us.uid = ui.uid -> where us.uid = '111111111';+---------+-----------+---------+----+-----------+-------+| id | uid | name | id | uid | score |+---------+-----------+---------+----+-----------+-------+| 1 | 111111111 | tanglei | 5 | 111111111 | 100 || 3685399 | 111111111 | tanglei | 5 | 111111111 | 100 || 3685400 | 111111111 | tanglei | 5 | 111111111 | 100 || 3685401 | 111111111 | tanglei | 5 | 111111111 | 100 || 3685402 | 111111111 | tanglei | 5 | 111111111 | 100 || 3685403 | 111111111 | tanglei | 5 | 111111111 | 100 |+---------+-----------+---------+----+-----------+-------+6 rows in set (1.14 sec)mysql> select from userinfo ui -> inner join userscore us on us.uid = ui.uid -> where ui.uid = '111111111';+---------+-----------+---------+----+-----------+-------+| id | uid | name | id | uid | score |+---------+-----------+---------+----+-----------+-------+| 1 | 111111111 | tanglei | 5 | 111111111 | 100 || 3685399 | 111111111 | tanglei | 5 | 111111111 | 100 || 3685400 | 111111111 | tanglei | 5 | 111111111 | 100 || 3685401 | 111111111 | tanglei | 5 | 111111111 | 100 || 3685402 | 111111111 | tanglei | 5 | 111111111 | 100 || 3685403 | 111111111 | tanglei | 5 | 111111111 | 100 |+---------+-----------+---------+----+-----------+-------+6 rows in set (0.00 sec)
mysql> explain -> select from userinfo ui -> inner join userscore us on us.uid = ui.uid -> where us.uid = '111111111';+----+-------------+-------+------+---------------+-----------+---------+-------+---------+----------------------------------------------------+| id | selecttype | table | type | possiblekeys | key | keylen | ref | rows | Extra |+----+-------------+-------+------+---------------+-----------+---------+-------+---------+----------------------------------------------------+| 1 | SIMPLE | us | ref | indexuid | indexuid | 258 | const | 1 | Using index condition || 1 | SIMPLE | ui | ALL | NULL | NULL | NULL | NULL | 2989934 | Using where; Using join buffer (Block Nested Loop) |+----+-------------+-------+------+---------------+-----------+---------+-------+---------+----------------------------------------------------+2 rows in set (0.00 sec)mysql> explain -> select from userinfo ui -> inner join userscore us on us.uid = ui.uid -> where ui.uid = '111111111';+----+-------------+-------+------+---------------+-----------+---------+-------+------+----------------------------------------------------+| id | selecttype | table | type | possiblekeys | key | keylen | ref | rows | Extra |+----+-------------+-------+------+---------------+-----------+---------+-------+------+----------------------------------------------------+| 1 | SIMPLE | ui | ref | indexuid | indexuid | 194 | const | 6 | Using index condition || 1 | SIMPLE | us | ALL | index_uid | NULL | NULL | NULL | 4 | Using where; Using join buffer (Block Nested Loop) |+----+-------------+-------+------+---------------+-----------+---------+-------+------+----------------------------------------------------+2 rows in set (0.01 sec)
说明: 本文测试场景基于 MySQL 5.6, 另外, 本文案例只是为了说明问题, 其中的 SQL 并不规范(例如尽量别用 select * 之类的), 请勿模仿(模仿了我也不负责). 为了写本文, 可花了不少时间, 建 DB, 灌mock数据等等, 如果觉得有用, 还望你帮忙"在看", "转发". 最后留一个思考题供讨论, 欢迎留言说出你的看法.
打个广告
阿里云ECS弹性计算服务是阿里云的最重要的云服务产品之一。弹性计算服务是一种简单高效,处理能力可弹性伸缩的计算服务。我们始终致力于利用和创造业界最新的前沿技术,让更多的客户轻松享受这些技术红利,在云上快速构建更稳定、安全的应用,提升运维效率,降低IT成本,使客户更专注于自己的核心业务创新。弹性计算重新定义了人们使用计算资源的方式,这一新的方式正在并且将一直影响着关于计算资源的生态和经济圈。我们正在创造历史,我们真诚地邀请您加入我们的队伍。
最近团队释放不少 HC, 诚招 P6/P7/P8 的同学, 本组同学主要招聘后端研发同学([JD在此]()), 感兴趣的同学可扫描下面二维码加我联系.
另外, 2021 届校招/实习生岗位也正在进行中([详情请戳]), 如果你是 2020-11 -- 2021-07 月之间毕业, 同时对阿里巴巴感兴趣, 也欢迎联系我帮忙内推.
参考资料
[explain-extended 文档](https://dev.mysql.com/doc/refman/5.6/en/explain-extended.html)
[mock数据生成器](https://faker.readthedocs.io/en/master/index.html#)
[Block Nested-Loop and Batched Key Access Joins](https://dev.mysql.com/doc/refman/5.6/en/bnl-bka-optimization.html)
版权声明: 本文为 InfoQ 作者【石头】的原创文章。
原文链接:【http://xie.infoq.cn/article/e94ed741004a233104225a599】。文章转载请联系作者。
石头
码农@阿里云,公众号:程序猿石头 2018.06.13 加入
程序员@阿里云,曾工作于大疆|宜信|腾讯,欢迎关注交流。
评论 (1 条评论)