写点什么

全网首发!阿里 p7 私藏的 ZooKeeper 面试题万字总结,撸完加薪 10k

发布于: 2021 年 06 月 07 日
全网首发!阿里p7私藏的ZooKeeper面试题万字总结,撸完加薪10k

今日分享开始啦,请大家多多指教~

zookeeper 是面试中的高频对象只要你是学 Java 的就必须要学会它,不论是大数据方向还是 Java 后端。网上有很多 zookeeper 相关的面试题,下面我对网上的所有 zookeeper 面试题做了一个大的总结。

1.什么是 Zookeeper

ZooKeeper 是一个开放源码的分布式协调服务,它是集群的管理者,监视着集群中各个节点的状态根据节点提交的反馈进行下一步合理操作。最终,将简单易用的接口和性能高效、功能稳定的系统提供给用户。分布式应用程序可以基于 Zookeeper 实现诸如数据发布/订阅、负载均衡、命名服务、分布式协调/通知、集群管理,Master 选举、分布式锁和分布式队列等功能。

Zookeeper 保证了如下分布式一致性特性:

  • 顺序一致性

  • 原子性

  • 单一视图

  • 可靠性

  • 实时性(最终一致性)

2. ZooKeeper 提供了什么

1、文件系统 2、通知机制

3.Zookeeper 文件系统

Zookeeper 提供一个多层级的节点命名空间(节点称为 znode)。与文件系统不同的是,这些节点都可以设置关联的数据,而文件系统中只有文件节点可以存放数据而目录节点不行。

Zookeeper 为了保证高吞吐和低延迟,在内存中维护了这个树状的目录结构,这种特性使得 Zookeeper 不能用于存放大量的数据,每个节点的存放数据上限为 1M。

4. ZAB 协议?

ZAB 协议是为分布式协调服务 Zookeeper 专门设计的一种支持崩溃恢复的原子广播协议。

ZAB 协议包括两种基本的模式:崩溃恢复和消息广播。

当整个 zookeeper 集群刚刚启动或者 Leader 服务器宕机、重启或者网络故障导致不存在过半的服务器与 Leader 服务器保持正常通信时,所有进程(服务器)进入崩溃恢复模式,首先选举产生新的 Leader 服务器,然后集群中 Follower 服务器开始与新的 Leader 服务器进行数据同步,当集群中超过半数机器与该 Leader 服务器完成数据同步之后,退出恢复模式进入消息广播模式,Leader 服务器开始接收客户端的事务请求生成事务提案来进行事务请求处理。

5. 四种类型的数据节点 Znode

1、PERSISTENT-持久节点

除非手动删除,否则节点一直存在于 Zookeeper 上

2、EPHEMERAL-临时节点

临时节点的生命周期与客户端会话绑定,一旦客户端会话失效(客户端与 zookeeper 连接断开不一定会话失效),那么这个客户端创建的所有临时节点都会被移除。

3、PERSISTENT_SEQUENTIAL-持久顺序节点

基本特性同持久节点,只是增加了顺序属性,节点名后边会追加一个由父节点维护的自增整型数字。

4、EPHEMERAL_SEQUENTIAL-临时顺序节点

基本特性同临时节点,增加了顺序属性,节点名后边会追加一个由父节点维护的自增整型数字。

6. Zookeeper Watcher 机制 – 数据变更通知

Zookeeper 允许客户端向服务端的某个 Znode 注册一个 Watcher 监听,当服务端的一些指定事件触发了这个 Watcher,服务端会向指定客户端发送一个事件通知来实现分布式的通知功能,然后客户端根据 Watcher 通知状态和事件类型做出业务上的改变。

工作机制:

  • 客户端注册 watcher

  • 服务端处理 watcher

  • 客户端回调 watcher

Watcher 特性总结:

  1. 一次性:无论是服务端还是客户端,一旦一个 Watcher 被触发,Zookeeper 都会将其从相应的存储中移除。这样的设计有效地减轻了服务端的压力,不然对于更新非常频繁的节点,服务端会不断地向客户端发送事件通知,无论对于网络还是服务端的压力都非常大。

  2. 客户端串行执行:客户端 Watcher 回调的过程是一个串行同步的过程。

  3. 轻量: Watcher 通知非常简单,只会告诉客户端发生了事件,而不会说明事件的具体内容。3.2 客户端向服务端注册 Watcher 的时候,并不会把客户端真实的 Watcher 对象实体传递到服务端,仅仅是在客户端请求中使用 boolean 类型属性进行了标记。

  4. watcher event 异步发送: watcher 的通知事件从 server 发送到 client 是异步的,这就存在一个问题,不同的客户端和服务器之间通过 socket 进行通信,由于网络延迟或其他因素导致客户端在不同的时刻监听到事件,由于 Zookeeper 本身提供了 ordering guarantee,即客户端监听事件后,才会感知它所监视 znode 发生了变化。所以我们使用 Zookeeper 不能期望能够监控到节点每次的变化。Zookeeper 只能保证最终的一致性,而无法保证强一致性。

  5. 注册 watcher : getData、exists、getChildren

  6. 触发 watcher: create、delete、setData

  7. 当一个客户端连接到一个新的服务器上时,watch 将会被以任意会话事件触发。当与一个服务器失去连接的时候,是无法接收到 watch 的。而当 client 重新连接时,如果需要的话,所有先前注册过的 watch,都会被重新注册。通常这是完全透明的。只有在一个特殊情况下,watch 可能会丢失:对于一个未创建的 znode 的 exist watch,如果在客户端断开连接期间被创建了,并且随后在客户端连接上之前又删除了,这种情况下,这个 watch 事件可能会被丢失。

7. 客户端注册 Watcher 实现

1、调用 getData()/getChildren()/exist()三个 API,传入 Watcher 对象

2、标记请求 request,封装 Watcher 到 WatchRegistration

3、封装成 Packet 对象,发服务端发送 request

4、收到服务端响应后,将 Watcher 注册到 ZKWatcherManager 中进行管理

5、请求返回,完成注册。

8. 服务端处理 Watcher 实现

  • 服务端接收 Watcher 并存储 接收到客户端请求,处理请求判断是否需要注册 Watcher,需要的话将数据节点 的节点路径和

ServerCnxn(ServerCnxn 代表一个客户端和服务端的连接,实现 了 Watcher 的 process 接口,此时可以看成一个 Watcher 对象)存储在 WatcherManager 的 WatchTable 和 watch2Paths 中去。

  • Watcher 触发 以服务端接收到 setData() 事务请求触 NodeDataChanged 事件为例:

2.1 封装 WatchedEvent 将通知状态(SyncConnected)、事件类型(NodeDataChanged)以及节点路径封装成一个 WatchedEvent 对象

2.2 查询 Watcher 从 WatchTable 中根据节点路径查找 Watcher

2.3 没找到;说明没有客户端在该数据节点上注册过 Watcher

2.4 找到;提取并从 WatchTable 和 Watch2Paths 中删除对应 Watcher(从这里 可以看出 Watcher 在服务端是一次性的,触发一次就失效了)

  • 调用 process 方法来触发 Watcher 这里 process 主要就是通过

ServerCnxn 对应的 TCP 连接发送 Watcher 事件通知。

9.客户端回调 Watcher

  • 客户端 SendThread 线程接收事件通知,交由 EventThread 线程回调 Watcher。

  • 客户端的 Watcher 机制同样是一次性的,一旦被触发后,该 Watcher 就失效了。

10. ACL 权限控制机制

UGO(User/Group/Others)

目前在 Linux/Unix 文件系统中使用,也是使用最广泛的权限控制方式。是一种粗粒度的文件系统权限控制模式。

ACL(Access Control List)访问控制列表

包括三个方面:

权限模式(Scheme)

1、IP:从 IP 地址粒度进行权限控制

2、Digest:最常用,用类似于 username:password 的权限标识来进行权限配置,便于区分不同应用来进行权限控制

3、World:最开放的权限控制方式,是一种特殊的 digest 模式,只有一个权限标识“world:anyone”

4、Super:超级用户

授权对象

授权对象指的是权限赋予的用户或一个指定实体,例如 IP 地址或是机器灯。

权限 Permission

1、CREATE:数据节点创建权限,允许授权对象在该 Znode 下创建子节点

2、DELETE:子节点删除权限,允许授权对象删除该数据节点的子节点

3、READ:数据节点的读取权限,允许授权对象访问该数据节点并读取其数据内容或子节点列表等

4、WRITE:数据节点更新权限,允许授权对象对该数据节点进行更新操作

5、ADMIN:数据节点管理权限,允许授权对象对该数据节点进行

ACL 相关设置操作

11. Chroot 特性

3.2.0 版本后,添加了 Chroot 特性,该特性允许每个客户端为自己设置一个命名空间。如果一个客户端设置了 Chroot,那么该客户端对服务器的任何操作,都将会被限制在其自己的命名空间下。

通过设置 Chroot,能够将一个客户端应用于 Zookeeper 服务端的一颗子树相对应,在那些多个应用公用一个 Zookeeper 进群的场景下,对实现不同应用间的相互隔离非常有帮助。

12. 会话管理

分桶策略:将类似的会话放在同一区块中进行管理,以便于 Zookeeper 对会话进行不同区块的隔离处理以及同一区块的统一处理。

分配原则:每个会话的“下次超时时间点”(ExpirationTime)

计算公式:

ExpirationTime_ = currentTime + sessionTimeout

ExpirationTime = (ExpirationTime_ / ExpirationInrerval + 1) *

ExpirationInterval , ExpirationInterval 是指 Zookeeper 会话超时检查时间间隔,默认 tickTime

13.服务器角色

Leader

1、事务请求的唯一调度和处理者,保证集群事务处理的顺序性

2、集群内部各服务的调度者

Follower

1、处理客户端的非事务请求,转发事务请求给 Leader 服务器

2、参与事务请求 Proposal 的投票

3、参与 Leader 选举投票

Observer

1、3.0 版本以后引入的一个服务器角色,在不影响集群事务处理能力的基础上提升集群的非事务处理能力

2、处理客户端的非事务请求,转发事务请求给 Leader 服务器

3、不参与任何形式的投票

14. Zookeeper 下 Server 工作状态

1、LOOKING:寻找 Leader 状态。当服务器处于该状态时,它会认为当前集群中没有 Leader,因此需要进入 Leader 选举状态。

2、FOLLOWING:跟随者状态。表明当前服务器角色是 Follower。

3、LEADING:领导者状态。表明当前服务器角色是 Leader。

4、OBSERVING:观察者状态。表明当前服务器角色是 Observer。

15. 数据同步

整个集群完成 Leader 选举之后,Learner(Follower 和 Observer 的统称)会向 Leader 服务器进行注册。当 Learner 服务器想 Leader 服务器完成注册后,进入数据同步环节。

数据同步流程:(均以消息传递的方式进行)

Learner 向 Learder 注册---->数据同步---->同步确认

Zookeeper 数据同步通常分为四类:

  1. 直接差异化同步(DIFF 同步)

  2. 先回滚再差异化同步(TRUNC+DIFF 同步)

  3. 仅回滚同步(TRUNC 同步)

  4. 全量同步(SNAP 同步)

在进行数据同步前,Leader 服务器会完成数据同步初始化

peerLastZxid:从 learner 服务器注册时发送的 ACKEPOCH 消息中提取 lastZxid(该 Learner 服务器最后处理的 ZXID)

minCommittedLog: Leader 服务器 Proposal 缓存队列 committedLog 中最小 ZXID

maxCommittedLog: Leader 服务器 Proposal 缓存队列 committedLog 中最大 ZXID

1.直接差异化同步(DIFF 同步)

场景:peerLastZxid 介于 minCommittedLog 和 maxCommittedLog 之间

2.先回滚再差异化同步(TRUNC+DIFF 同步)

场景:当新的 Leader 服务器发现某个 Learner 服务器包含了一条自己没有的事务记录,那么就需要让该 Learner 服务器进行事务回滚–回滚到 Leader 服务器上存在的,同时也是最接近于 peerLastZxid 的 ZXID

仅回滚同步(TRUNC 同步)

场景:peerLastZxid 大于 maxCommittedLog

4.全量同步(SNAP 同步)

场景一:peerLastZxid 小于 minCommittedLog

场景二:Leader 服务器上没有 Proposal 缓存队列且 peerLastZxid 不等于 lastProcessZxid

16. zookeeper 是如何保证事务的顺序一致性的?

zookeeper 采用了全局递增的事务 Id 来标识,所有的 proposal(提议)都在被提出的时候加上了 zxid,zxid 实际上是一个 64 位的数字,高 32 位是 epoch(时期; 纪元; 世; 新时代)用来标识 leader 周期,如果有新的 leader 产生出来,epoch 会自增,低 32 位用来递增计数。当新产生 proposal 的时候,会依据数据库的两阶段过程,首先会向其他的 server 发出事务执行请求,如果超过半数的机器都能执行并且能够成功,那么就会开始执行。

17.分布式集群中为什么会有 Master?

在分布式环境中,有些业务逻辑只需要集群中的某一台机器进行执行,其他的机器可以共享这个结果,这样可以大大减少重复计算,提高性能,于是就需要进行 leader 选举。

18.zk 节点宕机如何处理?

Zookeeper 本身也是集群,推荐配置不少于 3 个服务器。Zookeeper 自身也要保证当一个节点宕机时,其他节点会继续提供服务。

如果是一个 Follower 宕机,还有 2 台服务器提供访问,因为 Zookeeper 上面的数据是有多个副本的,数据并不会丢失;

如果是一个 Leader 宕机,Zookeeper 会选举出新的 Leader。

ZK 集群的机制是只要超过半数的节点正常,集群就能正常提供服务。只有在 ZK 节点挂得太多,只剩一半或不到一半节点能工作,集群才失效。

所以

3 个节点的 cluster 可以挂掉 1 个节点(leader 可以得到 2 票>1.5)2 个节点的 cluster 就不能挂掉任何 1 个节点了(leader 可以得到 1 票<=1

19.zookeeper 负载均衡和 nginx 负载均衡区别

zk 的负载均衡是可以调控,nginx 只是能调权重,其他需要可控的都需要自己写插件;但是 nginx 的吞吐量比 zk 大很多,所有需按业务选择使用哪种方式。

20. Zookeeper 有哪几种几种部署模式?

部署模式:单机模式、伪集群模式、集群模式。

21. 集群最少要几台机器,集群规则是怎样的?

集群规则为 2N+1 台,N>0,即 3 台。

22. 集群支持动态添加机器吗?

全部重启:关闭所有 Zookeeper 服务,修改配置之后启动。不影响之前客户端的会话。

逐个重启:在过半存活即可用的原则下,一台机器重启不影响整个集群对外提供服务。这是比较常用的方式。

提示:3.5 版本开始支持动态扩容。

23. Zookeeper 对节点的 watch 监听通知是永久的吗?为什么不是永久的?

不是。官方声明:一个 Watch 事件是一个一次性的触发器,当被设置了 Watch 的数据发生了改变的时候,则服务器将这个改变发送给设置了 Watch 的客户端,以便通知它们。

为什么不是永久的,举个例子,如果服务端变动频繁,而监听的客户端很多情况下,每次变动都要通知到所有的客户端,给网络和服务器造成很大压力。一般是客户端执行 getData(“/节点 A”,true),如果节点 A 发生了变更或删除,客户端会得到它的 watch 事件,但是在之后节点 A 又发生了变更,而客户端又没有设置 watch 事件,就不再给客户端发送。在实际应用中,很多情况下,我们的客户端不需要知道服务端的每一次变动,我只要最新的数据即可。

24. Zookeeper 的 java 客户端都有哪些?

java 客户端:zk 自带的 zkclient 及 Apache 开源的 Curator。

25. chubby 是什么,和 zookeeper 比你怎么看?

chubby 是 google 的,完全实现 paxos 算法,不开源。zookeeper 是 chubby 的开源实现,使用 zab 协议,paxos 算法的变种。

26. 说几个 zookeeper 常用的命令。

常用命令:ls get set create delete 等。

27. ZAB 和 Paxos 算法的联系与区别?

相同点:

1、两者都存在一个类似于 Leader 进程的角色,由其负责协调多个 Follower 进程的运行

2、Leader 进程都会等待超过半数的 Follower 做出正确的反馈后,才会将一个提案进行提交

3、ZAB 协议中,每个 Proposal 中都包含一个 epoch 值来代表当前的 Leader 周期,Paxos 中名字为 Ballot

不同点:

ZAB 用来构建高可用的分布式数据主备系统(Zookeeper),Paxos 是用来构建分布式一致性状态机系统。

28. Zookeeper 的典型应用场景

Zookeeper 是一个典型的发布/订阅模式的分布式数据管理与协调框架,开发人员可以使用它来进行分布式数据的发布和订阅。

通过对 Zookeeper 中丰富的数据节点进行交叉使用,配合 Watcher 事件通知机制,可以非常方便的构建一系列分布式应用中年都会涉及的核心功能,如:

1、数据发布/订阅

数据发布/订阅系统,即所谓的配置中心,顾名思义就是发布者发布数据供订阅者进行数据订阅。

目的::动态获取数据(配置信息)实现数据(配置信息)的集中式管理和数据的动态更新

数据(配置信息)特性:

(1)数据量通常比较小

(2)数据内容在运行时会发生动态更新

(3)集群中各机器共享,配置一致

如:机器列表信息、运行时开关配置、数据库配置信息等

基于 Zookeeper 的实现方式

  1. 数据存储:将数据(配置信息)存储到 Zookeeper 上的一个数据节点

  2. 数据获取:应用在启动初始化节点从 Zookeeper 数据节点读取数据,并在该节点上注册一个数据变更 Watcher

  3. 数据变更:当变更数据时,更新 Zookeeper 对应节点数据,Zookeeper 会将数据变更通知发到各客户端,客户端接到通知后重新读取变更后的数据即可。

2、负载均衡

3、命名服务

命名服务是指通过指定的名字来获取资源或者服务的地址,利用 zk 创建一个全局的路径,即是唯一的路径,这个路径就可以作为一个名字,指向集群中的集群,提供的服务的地址,或者一个远程的对象等等。

4、分布式协调/通知

对于系统调度来说:操作人员发送通知实际是通过控制台改变某个节点的状态,然后 zk 将这些变化发送给注册了这个节点的 watcher 的所有客户端。

对于执行情况汇报:每个工作进程都在某个目录下创建一个临时节点。并携带工作的进度数据,这样汇总的进程可以监控目录子节点的变化获得工作进度的实时的全局情况。

5、集群管理

所谓集群管理无在乎两点:是否有机器退出和加入、选举 master。

对于第一点,所有机器约定在父目录下创建临时目录节点,然后监听父目录节点的子节点变化消息。一旦有机器挂掉,该机器与 zookeeper 的连接断开,其所创建的临时目录节点被删除,所有其他机器都收到通知:某个兄弟目录被删除,于是,所有人都知道。新机器加入也是类似,所有机器收到通知:新兄弟目录加入,highcount 又有了,对于第二点,我们稍微改变一下,所有机器创建临时顺序编号目录节点,每次选取编号最小的机作为 master 。

6、Master 选举

7、分布式锁

有了 zookeeper 的一致性文件系统,锁的问题变得容易。锁服务可以分为两类,一个是保持独占,另一个是控制时序。对于第一类,我们将 zookeeper 上的一个 znode 看作是一把锁,通过 createznode 的方式来实现。所有客户端都去创建 /distribute_lock 节点,最终成功创建的那个客户端也即拥有了这把锁。用完删除掉自己创建的 distribute_lock 节点就释放出锁。

对于第二类, /distribute_lock 已经预先存在,所有客户端在它下面创建临时顺序编号目录节点,和选 master 一样,编号最小的获得锁,用完删除,依次方便。

8、分布式队列

两种类型的队列:

1、同步队列,当一个队列的成员都聚齐时,这个队列才可用,否则一直等待所有成员到达。

2、队列按照 FIFO 方式进行入队和出队操作。

第一类,在约定目录下创建临时目录节点,监听节点数目是否是我们要求的数目。

第二类,和分布式锁服务中的控制时序场景基本原理一致,入列有编号,出列按编号。在特定的目录下创建 PERSISTENT_SEQUENTIAL 节点,创建成功时 Watcher 通知等待的队列,队列删除序列号最小的节点用以消费。此场景下 Zookeeper 的 znode 用于消息存储,znode 存储的数据就是消息队列中的消息内容,SEQUENTIAL 序列号就是消息的编号,按序取出即可。由于创建的节点是久化的,所以不必担心队列消息的丢失问题。

29.客户端如何正确处理 CONNECTIONLOSS(连接断开) 和 SESSIONEXPIRED(Session 过期)两类连接异常?

在 ZooKeeper 中,服务器和客户端之间维持的是一个长连接,在 SESSION_TIMEOUT 时间内,服务器会确定客户端是否正常连接(客户端会定时向服务器发送 heart_beat),服务器重置下次 SESSION_TIMEOUT 时间。因此,在正常情况下,Session 一直有效,并且 zk 集群所有机器上都保存这个 Session 信息。在出现问题的情况下,客户端与服务器之间连接断了(客户端所连接的那台 zk 机器挂了,或是其它原因的网络闪断),这个时候客户端会主动在地址列表(初始化的时候传入构造方法的那个参数 connectString)中选择新的地址进行连接。

以上即为服务器与客户端之间维持长连接的过程,在这个过程中,用户可能会看到两类异常 CONNECTIONLOSS(连接断开) 和 SESSIONEXPIRED(Session 过期)。 发生 CONNECTIONLOSS 后,此时用户不需要关心我的会话是否可用,应用所要做的就是等待客户端帮我们自动连接上新的 zk 机器,一旦成功连接上新的 zk 机器后,确认之前的操作是否执行成功了。

31.一个客户端修改了某个节点的数据,其他客户端能够马上获取到这个最新数据吗?

ZooKeeper 不能确保任何客户端能够获取(即 Read Request)到一样的数据,除非客户端自己要求,方法是客户端在获取数据之前调用 org.apache.zookeeper.AsyncCallback.VoidCallback,java.lang.Object)sync。

通常情况下(这里所说的通常情况满足:1. 对获取的数据是否是最新版本不敏感,2. 一个客户端修改了数据,其它客户端是否需要立即能够获取最新数据),可以不关心这点。

在其它情况下,最清晰的场景是这样:ZK 客户端 A 对 /my_test 的内容从 v1->v2, 但是 ZK 客户端 B 对 /my_test 的内容获取,依然得到的是 v1. 请注意,这个是实际存在的现象,当然延时很短。解决的方法是客户端 B 先调用 sync(), 再调用 getData()。

32.能否收到每次节点变化的通知?

如果节点数据的更新频率很高的话,不能。

原因在于:当一次数据修改,通知客户端,客户端再次注册 watch,在这个过程中,可能数据已经发生了许多次数据修改,因此,千万不要做这样的测试:”数据被修改了 n 次,一定会收到 n 次通知”来测试 server 是否正常工作。

33.能否为临时节点创建子节点?

ZooKeeper 中不能为临时节点创建子节点,如果需要创建子节点,应该将要创建子节点的节点创建为永久性节点。

34.是否可以拒绝单个 IP 对 ZooKeeper 的访问? 如何实现?

ZK 本身不提供这样的功能,它仅仅提供了对单个 IP 的连接数的限制。你可以通过修改 iptables 来实现对单个 ip 的限制。

34.ZooKeeper 集群中服务器之间是怎样通信的?

Leader 服务器会和每一个 Follower/Observer 服务器都建立 TCP 连接,同时为每个 F/O 都创建一个叫做 LearnerHandler 的实体。LearnerHandler 主要负责 Leader 和 F/O 之间的网络通讯,包括数据同步,请求转发和 Proposal 提议的投票等。Leader 服务器保存了所有 F/O 的 LearnerHandler。

35.ZooKeeper 是否会自动进行日志清理?

zk 自己不会进行日志清理,需要运维人员进行日志清理。

36.谈谈你对 ZooKeeper 的理解?

Zookeeper 作为一个分布式的服务框架,主要用来解决分布式集群中应用系统的一致性问题。ZooKeeper 提供的服务包括:分布式消息同步和协调机制、服务器节点动态上下线、统一配置管理、负载均衡、集群管理等。

ZooKeeper 提供基于类似于 Linux 文件系统的目录节点树方式的数据存储,即分层命名空间。Zookeeper 并不是用来专门存储数据的,它的作用主要是用来维护和监控你存储的数据的状态变化,通过监控这些数据状态的变化,从而可以达到基于数据的集群管理,ZooKeeper 节点的数据上限是 1MB。

我们可以认为 Zookeeper=文件系统+通知机制,对于 ZooKeeper 的数据结构,每个子目录项如 NameService 都被称作为 znode,这个 znode 是被它所在的路径唯一标识,如 Server1 这个 znode 的标识为/NameService/Server1;

znode 可以有子节点目录,并且每个 znode 可以存储数据,注意 EPHEMERAL 类型的目录节点不能有子节点目录(因为它是临时节点);

znode 是有版本的,每个 znode 中存储的数据可以有多个版本,也就是一个访问路径中可以存储多份数据;

znode 可以是临时节点,一旦创建这个 znode 的客户端与服务器失去联系,这个 znode 也将自动删除,Zookeeper 的客户端和服务器通信采用长连接方式,每个客户端和服务器通过心跳来保持连接,这个连接状态称为 session,如果 znode 是临时节点,这个 session 失效,znode 也就删除了;

znode 的目录名可以自动编号,如 App1 已经存在,再创建的话,将会自动命名为 App2;

znode 可以被监控,包括这个目录节点中存储的数据的修改,子节点目录的变化等,一旦变化可以通知设置监控的客户端,这个是 Zookeeper 的核心特性,Zookeeper 的很多功能都是基于这个特性实现的,后面在典型的应用场景中会有实例介绍。

37.请说明 ZooKeeper 使用到的各个端口的作用?

2888:Follower 与 Leader 交换信息的端口。

3888:万一集群中的 Leader 服务器挂了,需要一个端口来重新进行选举,选出一个新的 Leader,而这个端口就是用来执行选举时服务器相互通信的端口。

38.ZooKeeper 集群如果有 3 台机器,挂掉一台是否还能工作?挂掉两台呢?

对于 ZooKeeper 集群,过半存活即可使用。

39.请谈谈对 ZooKeeper 对事务性的支持?

ZooKeeper 对于事务性的支持主要依赖于四个函数,zoo_create_op_init, zoo_delete_op_init, zoo_set_op_init 以及 zoo_check_op_init。每一个函数都会在客户端初始化一个 operation,客户端程序有义务保留这些 operations。当准备好一个事务中的所有操作后,可以使用 zoo_multi 来提交所有的操作,由 zookeeper 服务来保证这一系列操作的原子性。也就是说只要其中有一个操作失败了,相当于此次提交的任何一个操作都没有对服务端的数据造成影响。Zoo_multi 的返回值是第一个失败操作的状态信号。

40.数据存储在什么地方

数据存储可分为:1.内存存储 2.磁盘存储

Zk 的数据模型是树结构,在内存数据库中,存储了整棵树的内容,包括 所有的节点路径、节点数据、ACL(权限信息)、Zookeeper 会定时把这个数据存储在从磁盘上。

41.Zookeeper 和 Dubbo 的关系?

Zookeeper 的作用:

zookeeper 用来注册服务和进行负载均衡,哪一个服务由哪一个机器来提供必需让调用者知道,简单来说就是 ip 地址和服务名称的对应关系。当然也可以通过硬编码的方式把这种对应关系在调用方业务代码中实现,但是如果提供服务的机器挂掉调用者无法知晓,如果不更改代码会继续请求挂掉的机器提供服务。zookeeper 通过心跳机制可以检测挂掉的机器并将挂掉机器的 ip 和服务对应关系从列表中删除。至于支持高并发,简单来说就是横向扩展,在不更改代码的情况通过添加机器来提高运算能力。通过添加新的机器向 zookeeper 注册服务,服务的提供者多了能服务的客户就多了。

dubbo:

是管理中间层的工具,在业务层到数据仓库间有非常多服务的接入和服务提供者需要调度,dubbo 提供一个框架解决这个问题。

注意这里的 dubbo 只是一个框架,至于你架子上放什么是完全取决于你的,就像一个汽车骨架,你需要配你的轮子引擎。这个框架中要完成调度必须要有一个分布式的注册中心,储存所有服务的元数据,你可以用 zk,也可以用别的,只是大家都用 zk。

zookeeper 和 dubbo 的关系:

Dubbo 的将注册中心进行抽象,它可以外接不同的存储媒介给注册中心提供服务,有 ZooKeeper,Memcached,Redis 等。

引入了 ZooKeeper 作为存储媒介,也就把 ZooKeeper 的特性引进来。首先是负载均衡,单注册中心的承载能力是有限的,在流量达到一定程度的时 候就需要分流,负载均衡就是为了分流而存在的,一个 ZooKeeper 群配合相应的 Web 应用就可以很容易达到负载均衡;资源同步,单单有负载均衡还不 够,节点之间的数据和资源需要同步,ZooKeeper 集群就天然具备有这样的功能;命名服务,将树状结构用于维护全局的服务地址列表,服务提供者在启动 的时候,向 ZooKeeper 上的指定节点 /dubbo/${serviceName}/providers 目录下写入自己的 URL 地址,这个操作就完成了服务的发布。 其他特性还有 Mast 选举,分布式锁等。

今日份分享已结束,请大家多多包涵和指点!

用户头像

还未添加个人签名 2021.04.20 加入

Java工具与相关资料获取等WX: pfx950924(备注来源)

评论

发布
暂无评论
全网首发!阿里p7私藏的ZooKeeper面试题万字总结,撸完加薪10k