@开发者,请查收新书《MindSpore 大语言模型实战》
近年来,以 ChatGPT 为代表的大语言模型如雨后春笋般涌现,成为 AI 领域的焦点。在大语言模型的开发实践中,AI 框架的选择至关重要。AI 框架是 AI 算法模型设计、训练和验证的一套标准接口、特性库和工具包,集成了算法的封装、数据的调用以及计算资源的使用,同时面向开发者提供了开发界面和高效的执行平台。
昇思 MindSpore 作为华为开源的 AI 框架,在过去的几年里使能产业界、学术界基于昇思原生、适配支持超过 50 个大模型。开源 4 年多来,昇思 MindSpore 已成为国内 AI 大模型创新的首选框架,原生支持大模型及 AI+科学计算能力,以多维混合分布式并行能力,提升超大模型的训练效率,并打造 MindSpore TransFormers、MindSpore One 生成式套件与 MindSpore Science 科学智能套件,实现全流程开箱即用,大幅降低大模型全流程的开发门槛与成本。
基于此,《MindSpore 大语言模型实战》一书应运而生,本书由昇思开源社区技术委员会委员陈雷老师联合昇思研发团队编写,生动展现昇思 MindSpore 在使能大语言模型的创新应用案例,为开发者快速上手昇思、开发大模型提供指导。
购书链接:https://product.dangdang.com/29791704.html
内容简介
本书旨在深度挖掘大语言模型技术。首先,本书追溯大语言模型的发展历程,介绍 Transformer 模型的基本原理、结构和模块及在大模型任务中的应用,并剖析它们在各领域的成功案例,然后介绍由 Encoder-Only 到 Decoder-Only 的技术路线发展过程中对应的 BERT、GPT 等大语言模型,深入理解它们背后的工作原理。通过理论介绍,读者将对大语言模型的演进和突破有更为清晰的认识。
接着,本书重点深入展开昇思 MindSpore 支撑一众大模型的核心:分布式并行能力,解析其在大语言模型实践中的独特之处,这将有助于读者全面了解昇思 MindSpore 在大语言模型实践中的创新应用。
最后,本书以主流开源大语言模型 BLOOM 和 LLaMA 为样例,聚焦大语言模型在不同领域的实践,包括自然语言处理、图像生成、语音识别等领域。揭示 MindSpore 如何为这些领域的大语言模型提供高效的支持,帮助读者更好地将大语言模型应用于实际问题。
为了使读者更好地学习和理解相关内容,本书还提供基于昇思 MindSpore 实现的大语言模型实践的样例代码。这些样例代码将帮助读者从理论到实践,逐步掌握大语言模型的构建方法和昇思 MindSpore 应用的核心技术。
必读理由
●紧跟热点:当前人工智能最热的领域是大语言模型,从业者对了解、使用及构建大语言模型充满热情,本书以大语言模型领域的应用为主,切合市场热点。
●实战为主:全方位深度学习知识学习和高效的框架代码实践,帮助开发者/学生/从业者等快速理解并打造自己的大语言模型,本书适合所有感兴趣的人学习。
●模块化课程:紧跟业界热点,拆解至最小颗粒度进行分类,精准定位知识点,有的放矢最大效率进行学习。
●专家指路:作者陈雷在 MindSpore 人工智能框架深耕领域多年,有丰富的理论实践经验,收到业内人士和开发者的广泛认可。
●免费资源:课程全程免费,并提供免费算力资源用于学习,可关注 MindSpore 公众号发布的活动;更多的大模型案例可关注昇思 MindSpore 技术公开课的持续更新。
作者简介
陈雷:加拿大滑铁卢大学计算机博士。现担任香港科技大学(广州)信息枢纽院长,数据科学与分析学域讲座教授,广州市大数据智能重点实验室主任。研究方向包括数据驱动的人工智能、大数据分析、知识图谱、众包、区块链、图数据库、概率和不确定数据库,以及时空和时间序列数据库。
曾获 2020 年度中国电子学会科学技术奖一等奖、2015 年 ACM SIGMOD 时间检测奖 2022 WLDB 最佳研究论文奖、2014LDB 优秀示范奖。曾担任 ICDE2023 和 VLDB2019 PC 联合主席、VLDB Journal 联合主编、VLDB 基金会执行委员。目前担任 IEEETKDE 主编、DASFAA 国际会议指导委员会主席、长江讲座教授,当选 IEEE 会士和 ACM 杰出科学家,获得国家杰出青年科学基金海外青年学者合作研究项目支持。
评论