写点什么

二、搭建 Jupyter Notebook 环境

用户头像
刘润森
关注
发布于: 2020 年 09 月 26 日

@Author : By Runsen



1、Jupyter notebook历史



Jupyter 创始人 Fernando Pérez 的说法,他最初的梦想是做一个综合 Ju (Julia)、Py (Python)和 R 三种科学运算语言的计算工具平台,所以将其命名为 Ju-Py-te-R。发展到现在,Jupyter 已经成为一个几乎支持所有语言,能够把软件代码、计算输出、解释文档、多媒体资源整合在一起的多功能科学运算平台。



在Pycham中只能运行一共py文件,而在Jupyter notebook可以运行一行代码就可以了。



2 、环境搭建



你可以直接是通过 pip 命令安装。



pip install jupyter



你也可以下载anaconda



Anaconda官网下载链接:https://www.anaconda.com/distribution/#download-section,选择Python3版本的安装包下载即可



如果下载速度过慢,可以选择安装Anaconda的清华镜像,网址https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive



下载完成之后,直接双击安装包安装即可。安装后添加清华镜像源解决conda install 下载速度慢的问题,打开Anaconda Prompt命令行,依次添加命令



conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/msys2/
conda config --set show_channel_urls yes



之前说清华源,不适应了,现在OK,可以使用清华源



3、 conda常见命令



conda不仅可以方便安装,更新,卸载工具包,而且安装时能自动安装相应的依赖包。conda命令多数时候是在配置虚拟环境时使用,下面是conda常见命令



conda list //查看当前的包
conda search request //查找request库
conda install request //安装request库
conda uninstall request //删除request库
conda update request //更新request库



很多时候不同的库依赖不同的依赖包,需要创建虚拟环境,下面是conda创建虚拟环境的常用命令



conda info --envs //查看安装好的环境
# deeplearn代指克隆得到的新环境的名称,base代指被克隆的环境的名称
conda create --name deeplearn --clone base
# 激活虚拟环境
activate envname //for windows
source activate envname //for liunx and mac
# 退出虚拟坏境
deactivate
#查看当前的包
conda list





#查看安装好的环境
conda info --envs





4、虚拟环境搭建



在创建的虚拟环境上运行jupyter notebook,但发现在notebook中的python其实并没有运行在指定的虚拟环境引擎上,只需要安装nbcondakernels插件即可解决,注意是在base环境下安装,而不是虚拟环境



(base) conda install nb_conda_kernels



安装成功后,在kernel -> change kernel中即可切换到指定的虚拟环境



你可以可以新建Notebook的时候设置kernel





5、 修改jupyter notebook的打开路径



安装好jupyter notebook 后打开的是默认文档位置,需要来修改存放文件的路径。



下面教大家修改jupyter notebook的打开路径



打开jupyter notebook 文件所在的位置

右键, 打开属性

按照下图配置参数

这样打开jupyter notebook就不是默认文档位置了。





6、 pip 和conda的区别



conda可以让你同时管理安装处理有关的python任务和跟python无关任务,即pip可以允许在任何环境中安装 python包,conda允许你在conda环境中安装任何语言包(包括C语言或者python)。



conda使用一个新的包格式,你不能交替使用conda和pip,



因为pip不能安装和解析conda的包格式。可以使用这两个工具,但是它们是不能交互的。



conda安装库是在一个地方,而且需要根据Python的环境和依赖库而定,比如numpy的版本有的过高,导致安装这个库使用的时候报错。



pip安装就是根据Python的版本而定,有的时候conda安装不了,可以采用pip安装。



>本文已收录 GitHub,传送门~ ,里面更有大厂面试完整考点,欢迎 Star。



发布于: 2020 年 09 月 26 日阅读数: 40
用户头像

刘润森

关注

刘润森 2018.09.17 加入

17年就读于东莞XX学院化学工程与工艺专业,GitChat作者。Runsen的微信公众号是"Python之王",关注后回复「小白」即可免费获取原创的Python学习资料;喜欢的微信搜索:「Python之王」。个人微信号:RunsenLiu

评论

发布
暂无评论
二、搭建Jupyter Notebook环境