前端高频手写面试题集锦
- 2022-12-15 浙江
本文字数:22649 字
阅读完需:约 74 分钟
手写深度比较 isEqual
思路:深度比较两个对象,就是要深度比较对象的每一个元素。=> 递归
递归退出条件:
被比较的是两个值类型变量,直接用“===”判断
被比较的两个变量之一为
null
,直接判断另一个元素是否也为null
提前结束递推:
两个变量
keys
数量不同传入的两个参数是同一个变量
递推工作:深度比较每一个
key
function isEqual(obj1, obj2){
//其中一个为值类型或null
if(!isObject(obj1) || !isObject(obj2)){
return obj1 === obj2;
}
//判断是否两个参数是同一个变量
if(obj1 === obj2){
return true;
}
//判断keys数是否相等
const obj1Keys = Object.keys(obj1);
const obj2Keys = Object.keys(obj2);
if(obj1Keys.length !== obj2Keys.length){
return false;
}
//深度比较每一个key
for(let key in obj1){
if(!isEqual(obj1[key], obj2[key])){
return false;
}
}
return true;
}
实现 Object.is
Object.is
不会转换被比较的两个值的类型,这点和===
更为相似,他们之间也存在一些区别
NaN
在===
中是不相等的,而在Object.is
中是相等的+0
和-
0 在===
中是相等的,而在Object.is
中是不相等的
Object.is = function (x, y) {
if (x === y) {
// 当前情况下,只有一种情况是特殊的,即 +0 -0
// 如果 x !== 0,则返回true
// 如果 x === 0,则需要判断+0和-0,则可以直接使用 1/+0 === Infinity 和 1/-0 === -Infinity来进行判断
return x !== 0 || 1 / x === 1 / y;
}
// x !== y 的情况下,只需要判断是否为NaN,如果x!==x,则说明x是NaN,同理y也一样
// x和y同时为NaN时,返回true
return x !== x && y !== y;
};
实现观察者模式
观察者模式(基于发布订阅模式) 有观察者,也有被观察者
观察者需要放到被观察者中,被观察者的状态变化需要通知观察者 我变化了 内部也是基于发布订阅模式,收集观察者,状态变化后要主动通知观察者
class Subject { // 被观察者 学生
constructor(name) {
this.state = 'happy'
this.observers = []; // 存储所有的观察者
}
// 收集所有的观察者
attach(o){ // Subject. prototype. attch
this.observers.push(o)
}
// 更新被观察者 状态的方法
setState(newState) {
this.state = newState; // 更新状态
// this 指被观察者 学生
this.observers.forEach(o => o.update(this)) // 通知观察者 更新它们的状态
}
}
class Observer{ // 观察者 父母和老师
constructor(name) {
this.name = name
}
update(student) {
console.log('当前' + this.name + '被通知了', '当前学生的状态是' + student.state)
}
}
let student = new Subject('学生');
let parent = new Observer('父母');
let teacher = new Observer('老师');
// 被观察者存储观察者的前提,需要先接纳观察者
student. attach(parent);
student. attach(teacher);
student. setState('被欺负了');
实现节流函数(throttle)
节流函数原理:指频繁触发事件时,只会在指定的时间段内执行事件回调,即触发事件间隔大于等于指定的时间才会执行回调函数。总结起来就是: 事件,按照一段时间的间隔来进行触发 。
像 dom 的拖拽,如果用消抖的话,就会出现卡顿的感觉,因为只在停止的时候执行了一次,这个时候就应该用节流,在一定时间内多次执行,会流畅很多
手写简版
使用时间戳的节流函数会在第一次触发事件时立即执行,以后每过 wait 秒之后才执行一次,并且最后一次触发事件不会被执行
时间戳方式:
// func是用户传入需要防抖的函数
// wait是等待时间
const throttle = (func, wait = 50) => {
// 上一次执行该函数的时间
let lastTime = 0
return function(...args) {
// 当前时间
let now = +new Date()
// 将当前时间和上一次执行函数时间对比
// 如果差值大于设置的等待时间就执行函数
if (now - lastTime > wait) {
lastTime = now
func.apply(this, args)
}
}
}
setInterval(
throttle(() => {
console.log(1)
}, 500),
1
)
定时器方式:
使用定时器的节流函数在第一次触发时不会执行,而是在 delay 秒之后才执行,当最后一次停止触发后,还会再执行一次函数
function throttle(func, delay){
var timer = null;
returnfunction(){
var context = this;
var args = arguments;
if(!timer){
timer = setTimeout(function(){
func.apply(context, args);
timer = null;
},delay);
}
}
}
适用场景:
DOM
元素的拖拽功能实现(mousemove
)搜索联想(
keyup
)计算鼠标移动的距离(
mousemove
)Canvas
模拟画板功能(mousemove
)监听滚动事件判断是否到页面底部自动加载更多
拖拽场景:固定时间内只执行一次,防止超高频次触发位置变动
缩放场景:监控浏览器
resize
动画场景:避免短时间内多次触发动画引起性能问题
总结
函数防抖 :将几次操作合并为一次操作进行。原理是维护一个计时器,规定在 delay 时间后触发函数,但是在 delay 时间内再次触发的话,就会取消之前的计时器而重新设置。这样一来,只有最后一次操作能被触发。
函数节流 :使得一定时间内只触发一次函数。原理是通过判断是否到达一定时间来触发函数。
实现 Promise 相关方法
实现 Promise 的 resolve
实现 resolve 静态方法有三个要点:
传参为一个
Promise
, 则直接返回它。传参为一个
thenable
对象,返回的Promise
会跟随这个对象,采用它的最终状态作为自己的状态。其他情况,直接返回以该值为成功状态的
promise
对象。
Promise.resolve = (param) => {
if(param instanceof Promise) return param;
return new Promise((resolve, reject) => {
if(param && param.then && typeof param.then === 'function') {
// param 状态变为成功会调用resolve,将新 Promise 的状态变为成功,反之亦然
param.then(resolve, reject);
}else {
resolve(param);
}
})
}
实现 Promise.reject
Promise.reject 中传入的参数会作为一个 reason 原封不动地往下传, 实现如下:
Promise.reject = function (reason) {
return new Promise((resolve, reject) => {
reject(reason);
});
}
实现 Promise.prototype.finally
前面的
promise
不管成功还是失败,都会走到finally
中,并且finally
之后,还可以继续then
(说明它还是一个 then 方法是关键),并且会将初始的promise
值原封不动的传递给后面的then
.
Promise.prototype.finally 最大的作用
finally
里的函数,无论如何都会执行,并会把前面的值原封不动传递给下一个then
方法中如果
finally
函数中有promise
等异步任务,会等它们全部执行完毕,再结合之前的成功与否状态,返回值
Promise.prototype.finally 六大情况用法
// 情况1
Promise.resolve(123).finally((data) => { // 这里传入的函数,无论如何都会执行
console.log(data); // undefined
})
// 情况2 (这里,finally方法相当于做了中间处理,起一个过渡的作用)
Promise.resolve(123).finally((data) => {
console.log(data); // undefined
}).then(data => {
console.log(data); // 123
})
// 情况3 (这里只要reject,都会走到下一个then的err中)
Promise.reject(123).finally((data) => {
console.log(data); // undefined
}).then(data => {
console.log(data);
}, err => {
console.log(err, 'err'); // 123 err
})
// 情况4 (一开始就成功之后,会等待finally里的promise执行完毕后,再把前面的data传递到下一个then中)
Promise.resolve(123).finally((data) => {
console.log(data); // undefined
return new Promise((resolve, reject) => {
setTimeout(() => {
resolve('ok');
}, 3000)
})
}).then(data => {
console.log(data, 'success'); // 123 success
}, err => {
console.log(err, 'err');
})
// 情况5 (虽然一开始成功,但是只要finally函数中的promise失败了,就会把其失败的值传递到下一个then的err中)
Promise.resolve(123).finally((data) => {
console.log(data); // undefined
return new Promise((resolve, reject) => {
setTimeout(() => {
reject('rejected');
}, 3000)
})
}).then(data => {
console.log(data, 'success');
}, err => {
console.log(err, 'err'); // rejected err
})
// 情况6 (虽然一开始失败,但是也要等finally中的promise执行完,才能把一开始的err传递到err的回调中)
Promise.reject(123).finally((data) => {
console.log(data); // undefined
return new Promise((resolve, reject) => {
setTimeout(() => {
resolve('resolve');
}, 3000)
})
}).then(data => {
console.log(data, 'success');
}, err => {
console.log(err, 'err'); // 123 err
})
源码实现
Promise.prototype.finally = function (callback) {
return this.then((data) => {
// 让函数执行 内部会调用方法,如果方法是promise,需要等待它完成
// 如果当前promise执行时失败了,会把err传递到,err的回调函数中
return Promise.resolve(callback()).then(() => data); // data 上一个promise的成功态
}, err => {
return Promise.resolve(callback()).then(() => {
throw err; // 把之前的失败的err,抛出去
});
})
}
实现 Promise.all
对于 all 方法而言,需要完成下面的核心功能:
传入参数为一个空的可迭代对象,则直接进行
resolve
。如果参数中有一个
promise
失败,那么Promise.all
返回的promise
对象失败。在任何情况下,
Promise.all
返回的promise
的完成状态的结果都是一个数组
Promise.all = function(promises) {
return new Promise((resolve, reject) => {
let result = [];
let index = 0;
let len = promises.length;
if(len === 0) {
resolve(result);
return;
}
for(let i = 0; i < len; i++) {
// 为什么不直接 promise[i].then, 因为promise[i]可能不是一个promise
Promise.resolve(promise[i]).then(data => {
result[i] = data;
index++;
if(index === len) resolve(result);
}).catch(err => {
reject(err);
})
}
})
}
实现 promise.allsettle
MDN:
Promise.allSettled()
方法返回一个在所有给定的promise
都已经
fulfilled或
rejected后的
promise,并带有一个对象数组,每个对象表示对应的
promise`结果
当您有多个彼此不依赖的异步任务成功完成时,或者您总是想知道每个promise
的结果时,通常使用它。
【译】
Promise.allSettled
跟Promise.all
类似, 其参数接受一个Promise
的数组, 返回一个新的Promise
, 唯一的不同在于, 其不会进行短路, 也就是说当 Promise 全部处理完成后我们可以拿到每个Promise
的状态, 而不管其是否处理成功。
用法 | 测试用例
let fs = require('fs').promises;
let getName = fs.readFile('./name.txt', 'utf8'); // 读取文件成功
let getAge = fs.readFile('./age.txt', 'utf8');
Promise.allSettled([1, getName, getAge, 2]).then(data => {
console.log(data);
});
// 输出结果
/*
[
{ status: 'fulfilled', value: 1 },
{ status: 'fulfilled', value: 'zf' },
{ status: 'fulfilled', value: '11' },
{ status: 'fulfilled', value: 2 }
]
*/
let getName = fs.readFile('./name123.txt', 'utf8'); // 读取文件失败
let getAge = fs.readFile('./age.txt', 'utf8');
// 输出结果
/*
[
{ status: 'fulfilled', value: 1 },
{
status: 'rejected',
value: [Error: ENOENT: no such file or directory, open './name123.txt'] {
errno: -2,
code: 'ENOENT',
syscall: 'open',
path: './name123.txt'
}
},
{ status: 'fulfilled', value: '11' },
{ status: 'fulfilled', value: 2 }
]
*/
实现
function isPromise (val) {
return typeof val.then === 'function'; // (123).then => undefined
}
Promise.allSettled = function(promises) {
return new Promise((resolve, reject) => {
let arr = [];
let times = 0;
const setData = (index, data) => {
arr[index] = data;
if (++times === promises.length) {
resolve(arr);
}
console.log('times', times)
}
for (let i = 0; i < promises.length; i++) {
let current = promises[i];
if (isPromise(current)) {
current.then((data) => {
setData(i, { status: 'fulfilled', value: data });
}, err => {
setData(i, { status: 'rejected', value: err })
})
} else {
setData(i, { status: 'fulfilled', value: current })
}
}
})
}
实现 Promise.race
race 的实现相比之下就简单一些,只要有一个 promise 执行完,直接 resolve 并停止执行
Promise.race = function(promises) {
return new Promise((resolve, reject) => {
let len = promises.length;
if(len === 0) return;
for(let i = 0; i < len; i++) {
Promise.resolve(promise[i]).then(data => {
resolve(data);
return;
}).catch(err => {
reject(err);
return;
})
}
})
}
实现一个简版 Promise
// 使用
var promise = new Promise((resolve,reject) => {
if (操作成功) {
resolve(value)
} else {
reject(error)
}
})
promise.then(function (value) {
// success
},function (value) {
// failure
})
function myPromise(constructor) {
let self = this;
self.status = "pending" // 定义状态改变前的初始状态
self.value = undefined; // 定义状态为resolved的时候的状态
self.reason = undefined; // 定义状态为rejected的时候的状态
function resolve(value) {
if(self.status === "pending") {
self.value = value;
self.status = "resolved";
}
}
function reject(reason) {
if(self.status === "pending") {
self.reason = reason;
self.status = "rejected";
}
}
// 捕获构造异常
try {
constructor(resolve,reject);
} catch(e) {
reject(e);
}
}
// 添加 then 方法
myPromise.prototype.then = function(onFullfilled,onRejected) {
let self = this;
switch(self.status) {
case "resolved":
onFullfilled(self.value);
break;
case "rejected":
onRejected(self.reason);
break;
default:
}
}
var p = new myPromise(function(resolve,reject) {
resolve(1)
});
p.then(function(x) {
console.log(x) // 1
})
使用 class 实现
class MyPromise {
constructor(fn) {
this.resolvedCallbacks = [];
this.rejectedCallbacks = [];
this.state = 'PENDING';
this.value = '';
fn(this.resolve.bind(this), this.reject.bind(this));
}
resolve(value) {
if (this.state === 'PENDING') {
this.state = 'RESOLVED';
this.value = value;
this.resolvedCallbacks.map(cb => cb(value));
}
}
reject(value) {
if (this.state === 'PENDING') {
this.state = 'REJECTED';
this.value = value;
this.rejectedCallbacks.map(cb => cb(value));
}
}
then(onFulfilled, onRejected) {
if (this.state === 'PENDING') {
this.resolvedCallbacks.push(onFulfilled);
this.rejectedCallbacks.push(onRejected);
}
if (this.state === 'RESOLVED') {
onFulfilled(this.value);
}
if (this.state === 'REJECTED') {
onRejected(this.value);
}
}
}
Promise 实现-详细
可以把
Promise
看成一个状态机。初始是pending
状态,可以通过函数resolve
和reject
,将状态转变为resolved
或者rejected
状态,状态一旦改变就不能再次变化。then
函数会返回一个Promise
实例,并且该返回值是一个新的实例而不是之前的实例。因为Promise
规范规定除了pending
状态,其他状态是不可以改变的,如果返回的是一个相同实例的话,多个then
调用就失去意义了。对于
then
来说,本质上可以把它看成是flatMap
// 三种状态
const PENDING = "pending";
const RESOLVED = "resolved";
const REJECTED = "rejected";
// promise 接收一个函数参数,该函数会立即执行
function MyPromise(fn) {
let _this = this;
_this.currentState = PENDING;
_this.value = undefined;
// 用于保存 then 中的回调,只有当 promise
// 状态为 pending 时才会缓存,并且每个实例至多缓存一个
_this.resolvedCallbacks = [];
_this.rejectedCallbacks = [];
_this.resolve = function (value) {
if (value instanceof MyPromise) {
// 如果 value 是个 Promise,递归执行
return value.then(_this.resolve, _this.reject)
}
setTimeout(() => { // 异步执行,保证执行顺序
if (_this.currentState === PENDING) {
_this.currentState = RESOLVED;
_this.value = value;
_this.resolvedCallbacks.forEach(cb => cb());
}
})
};
_this.reject = function (reason) {
setTimeout(() => { // 异步执行,保证执行顺序
if (_this.currentState === PENDING) {
_this.currentState = REJECTED;
_this.value = reason;
_this.rejectedCallbacks.forEach(cb => cb());
}
})
}
// 用于解决以下问题
// new Promise(() => throw Error('error))
try {
fn(_this.resolve, _this.reject);
} catch (e) {
_this.reject(e);
}
}
MyPromise.prototype.then = function (onResolved, onRejected) {
var self = this;
// 规范 2.2.7,then 必须返回一个新的 promise
var promise2;
// 规范 2.2.onResolved 和 onRejected 都为可选参数
// 如果类型不是函数需要忽略,同时也实现了透传
// Promise.resolve(4).then().then((value) => console.log(value))
onResolved = typeof onResolved === 'function' ? onResolved : v => v;
onRejected = typeof onRejected === 'function' ? onRejected : r => throw r;
if (self.currentState === RESOLVED) {
return (promise2 = new MyPromise(function (resolve, reject) {
// 规范 2.2.4,保证 onFulfilled,onRjected 异步执行
// 所以用了 setTimeout 包裹下
setTimeout(function () {
try {
var x = onResolved(self.value);
resolutionProcedure(promise2, x, resolve, reject);
} catch (reason) {
reject(reason);
}
});
}));
}
if (self.currentState === REJECTED) {
return (promise2 = new MyPromise(function (resolve, reject) {
setTimeout(function () {
// 异步执行onRejected
try {
var x = onRejected(self.value);
resolutionProcedure(promise2, x, resolve, reject);
} catch (reason) {
reject(reason);
}
});
}));
}
if (self.currentState === PENDING) {
return (promise2 = new MyPromise(function (resolve, reject) {
self.resolvedCallbacks.push(function () {
// 考虑到可能会有报错,所以使用 try/catch 包裹
try {
var x = onResolved(self.value);
resolutionProcedure(promise2, x, resolve, reject);
} catch (r) {
reject(r);
}
});
self.rejectedCallbacks.push(function () {
try {
var x = onRejected(self.value);
resolutionProcedure(promise2, x, resolve, reject);
} catch (r) {
reject(r);
}
});
}));
}
};
// 规范 2.3
function resolutionProcedure(promise2, x, resolve, reject) {
// 规范 2.3.1,x 不能和 promise2 相同,避免循环引用
if (promise2 === x) {
return reject(new TypeError("Error"));
}
// 规范 2.3.2
// 如果 x 为 Promise,状态为 pending 需要继续等待否则执行
if (x instanceof MyPromise) {
if (x.currentState === PENDING) {
x.then(function (value) {
// 再次调用该函数是为了确认 x resolve 的
// 参数是什么类型,如果是基本类型就再次 resolve
// 把值传给下个 then
resolutionProcedure(promise2, value, resolve, reject);
}, reject);
} else {
x.then(resolve, reject);
}
return;
}
// 规范 2.3.3.3.3
// reject 或者 resolve 其中一个执行过得话,忽略其他的
let called = false;
// 规范 2.3.3,判断 x 是否为对象或者函数
if (x !== null && (typeof x === "object" || typeof x === "function")) {
// 规范 2.3.3.2,如果不能取出 then,就 reject
try {
// 规范 2.3.3.1
let then = x.then;
// 如果 then 是函数,调用 x.then
if (typeof then === "function") {
// 规范 2.3.3.3
then.call(
x,
y => {
if (called) return;
called = true;
// 规范 2.3.3.3.1
resolutionProcedure(promise2, y, resolve, reject);
},
e => {
if (called) return;
called = true;
reject(e);
}
);
} else {
// 规范 2.3.3.4
resolve(x);
}
} catch (e) {
if (called) return;
called = true;
reject(e);
}
} else {
// 规范 2.3.4,x 为基本类型
resolve(x);
}
}
实现 Promisify
const fs = require('fs')
const path = require('path')
// node中使用
// const fs = require('fs').promises 12.18版
// const promisify = require('util').promisify
// 包装node api promise化 典型的高级函数
const promisify = fn=>{
return (...args)=>{
return new Promise((resolve,reject)=>{
fn(...args, (err,data)=>{
if(err) {
reject(err)
}
resolve(data)
})
})
}
}
// const read = promisify(fs.readFile)
// read(path.join(__dirname, './promise.js'), 'utf8').then(d=>{
// console.log(d)
// })
// promise化node所有api
const promisifyAll = target=>{
Reflect.ownKeys(target).forEach(key=>{
if(typeof target[key] === 'function') {
target[key+'Async'] = promisify(target[key])
}
})
return target
}
// promise化fs下的函数
const promisifyNew = promisifyAll(fs)
promisifyNew.readFileAsync(path.join(__dirname, './promise.js'), 'utf8').then(d=>{
console.log(d)
})
module.exports = {
promisify,
promisifyAll
}
完整实现 Promises/A+规范
/**
* Promises/A+规范 实现一个promise
* https://promisesaplus.com/
*/
const EMUM = {
PENDING: 'PENDING',
FULFILLED: 'FULFILLED',
REJECTED: 'REJECTED'
}
// x 返回值
// promise2 then的时候new的promise
// promise2的resolve, reject
const resolvePromise = (x, promise2, resolve, reject)=>{
// 解析promise的值解析promise2是成功还是失败 传递到下层then
if(x === promise2) {
reject(new TypeError('类型错误'))
}
// 这里的x如果是一个promise的话 可能是其他的promise,可能调用了成功 又调用了失败
// 防止resolve的时候 又throw err抛出异常到reject了
let called
// 如果x是promise 那么就采用他的状态
// 有then方法是promise
if(typeof x === 'object' && typeof x!== null || typeof x === 'function') {
// x是对象或函数
try {
let then = x.then // 缓存,不用多次取值
if(typeof then === 'function') {
// 是promise,调用then方法里面有this,需要传入this为x才能取到then方法里面的值this.value
then.call(x, y=>{// 成功
// y值可能也是一个promise 如resolve(new Promise()) 此时的y==new Promise()
// 递归解析y,直到拿到普通的值resolve(x出去)
if(called) return;
called = true;
resolvePromise(y, promise2, resolve, reject)
},r=>{// 一旦失败直接失败
if(called) return;
called = true;
reject(r)
})
} else {
// 普通对象不是promise
resolve(x)
}
} catch (e) {
// 对象取值可能报错,用defineProperty定义get 抛出异常
if(called) return;
called = true;
reject(e)
}
} else {
// x是普通值
resolve(x) // 直接成功
}
}
class myPromise {
constructor(executor) {
this.status = EMUM.PENDING // 当前状态
this.value = undefined // resolve接收值
this.reason = undefined // reject失败返回值
/**
* 同一个promise可以then多次(发布订阅模式)
* 调用then时 当前状态是等待态,需要将当前成功或失败的回调存放起来(订阅)
* 调用resolve时 将订阅函数进行执行(发布)
*/
// 成功队列
this.onResolvedCallbacks = []
// 失败队列
this.onRejectedCallbacks = []
const resolve = value =>{
// 如果value是一个promise,需要递归解析
// 如 myPromise.resolve(new myPromise()) 需要解析value
if(value instanceof myPromise) {
// 不停的解析 直到值不是promise
return value.then(resolve,reject)
}
if(this.status === EMUM.PENDING) {
this.status = EMUM.FULFILLED
this.value = value
this.onResolvedCallbacks.forEach(fn=>fn())
}
}
const reject = reason =>{
if(this.status === EMUM.PENDING) {
this.status = EMUM.REJECTED
this.reason = reason
this.onRejectedCallbacks.forEach(fn=>fn())
}
}
try {
executor(resolve,reject)
} catch(e) {
reject(e)
}
}
then(onFulFilled, onRejected) {
// 透传 处理默认不传的情况
// new Promise((resolve,reject)=>{
// resolve(1)
// }).then().then().then(d=>{})
// new Promise((resolve,reject)=>{
// resolve(1)
// }).then(v=>v).then(v=>v).then(d=>{})
// new Promise((resolve,reject)=>{
// reject(1)
// }).then().then().then(null, e=>{console.log(e)})
// new Promise((resolve,reject)=>{
// reject(1)
// }).then(null,e=>{throw e}).then(null,e=>{throw e}).then(null,e=>{console.log(e)})
onFulFilled = typeof onFulFilled === 'function' ? onFulFilled : v => v
onRejected = typeof onRejected === 'function' ? onRejected : err => {throw err}
// 调用then 创建一个新的promise
let promise2 = new myPromise((resolve,reject)=>{
// 根据value判断是resolve 还是reject value也可能是promise
if(this.status === EMUM.FULFILLED) {
setTimeout(() => {
try {
// 成功回调结果
let x = onFulFilled(this.value)
// 解析promise
resolvePromise(x, promise2,resolve,reject)
} catch (error) {
reject(error)
}
}, 0);
}
if(this.status === EMUM.REJECTED) {
setTimeout(() => {
try {
let x = onRejected(this.reason)
// 解析promise
resolvePromise(x, promise2,resolve,reject)
} catch (error) {
reject(error)
}
}, 0);
}
// 用户还未调用resolve或reject方法
if(this.status === EMUM.PENDING) {
this.onResolvedCallbacks.push(()=>{
try {
let x = onFulFilled(this.value)
// 解析promise
resolvePromise(x, promise2,resolve,reject)
} catch (error) {
reject(error)
}
})
this.onRejectedCallbacks.push(()=>{
try {
let x = onRejected(this.reason)
// 解析promise
resolvePromise(x, promise2,resolve,reject)
} catch (error) {
reject(error)
}
})
}
})
return promise2
}
catch(errCallback) {
// 等同于没有成功,把失败放进去而已
return this.then(null, errCallback)
}
// myPromise.resolve 具备等待功能的 如果参数的promise会等待promise解析完毕在向下执行
static resolve(val) {
return new myPromise((resolve,reject)=>{
resolve(val)
})
}
// myPromise.reject 直接将值返回
static reject(reason) {
return new myPromise((resolve,reject)=>{
reject(reason)
})
}
// finally传入的函数 无论成功或失败都执行
// Promise.reject(100).finally(()=>{console.log(1)}).then(d=>console.log('success',d)).catch(er=>console.log('faild',er))
// Promise.reject(100).finally(()=>new Promise()).then(d=>console.log(d)).catch(er=>)
finally(callback) {
return this.then((val)=>{
return myPromise.resolve(callback()).then(()=>val)
},(err)=>{
return myPromise.resolve(callback()).then(()=>{throw err})
})
}
// Promise.all
static all(values) {
return new myPromise((resolve,reject)=>{
let resultArr = []
let orderIndex = 0
const processResultByKey = (value,index)=>{
resultArr[index] = value
// 处理完全部
if(++orderIndex === values.length) {
resolve(resultArr) // 处理完成的结果返回去
}
}
for (let i = 0; i < values.length; i++) {
const value = values[i];
// 是promise
if(value && typeof value.then === 'function') {
value.then((val)=>{
processResultByKey(val,i)
},reject)
} else {
// 不是promise情况
processResultByKey(value,i)
}
}
})
}
static race(promises) {
// 采用最新成功或失败的作为结果
return new myPromise((resolve,reject)=>{
for (let i = 0; i < promises.length; i++) {
let val = promises[i]
if(val && typeof val.then === 'function') {
// 任何一个promise先调用resolve或reject就返回结果了 也就是返回执行最快的那个promise的结果
val.then(resolve,reject)
}else{
// 普通值
resolve(val)
}
}
})
}
}
/**
* =====测试用例-====
*/
// let promise1 = new myPromise((resolve,reject)=>{
// setTimeout(() => {
// resolve('成功')
// }, 900);
// })
// promise1.then(val=>{
// console.log('success', val)
// },reason=>{
// console.log('fail', reason)
// })
/**
* then的使用方式 普通值意味不是promise
*
* 1、then中的回调有两个方法 成功或失败 他们的结果返回(普通值)会传递给外层的下一个then中
* 2、可以在成功或失败中抛出异常,走到下一次then的失败中
* 3、返回的是一个promsie,那么会用这个promise的状态作为结果,会用promise的结果向下传递
* 4、错误处理,会默认先找离自己最新的错误处理,找不到就向下查找,找打了就执行
*/
// read('./name.txt').then(data=>{
// return '123'
// }).then(data=>{
// }).then(null,err=>{
// })
// // .catch(err=>{ // catch就是没有成功的promise
// // })
/**
* promise.then实现原理:通过每次返回一个新的promise来实现(promise一旦成功就不能失败,失败就不能成功)
*
*/
// function read(data) {
// return new myPromise((resolve,reject)=>{
// setTimeout(() => {
// resolve(new myPromise((resolve,reject)=>resolve(data)))
// }, 1000);
// })
// }
// let promise2 = read({name: 'poetry'}).then(data=>{
// return data
// }).then().then().then(data=>{
// console.log(data,'-data-')
// },(err)=>{
// console.log(err,'-err-')
// })
// finally测试
// myPromise
// .resolve(100)
// .finally(()=>{
// return new myPromise((resolve,reject)=>setTimeout(() => {
// resolve(100)
// }, 100))
// })
// .then(d=>console.log('finally success',d))
// .catch(er=>console.log(er, 'finally err'))
/**
* promise.all 测试
*
* myPromise.all 解决并发问题 多个异步并发获取最终的结果
*/
// myPromise.all([1,2,3,4,new myPromise((resolve,reject)=>{
// setTimeout(() => {
// resolve('ok1')
// }, 1000);
// }),new myPromise((resolve,reject)=>{
// setTimeout(() => {
// resolve('ok2')
// }, 1000);
// })]).then(d=>{
// console.log(d,'myPromise.all.resolve')
// }).catch(err=>{
// console.log(err,'myPromise.all.reject')
// })
// 实现promise中断请求
let promise = new Promise((resolve,reject)=>{
setTimeout(() => {
// 模拟接口调用 ajax调用超时
resolve('成功')
}, 10000);
})
function promiseWrap(promise) {
// 包装一个promise 可以控制原来的promise是成功 还是失败
let abort
let newPromsie = new myPromise((resolve,reject)=>{
abort = reject
})
// 只要控制newPromsie失败,就可以控制被包装的promise走向失败
// Promise.race 任何一个先成功或者失败 就可以获得结果
let p = myPromise.race([promise, newPromsie])
p.abort = abort
return p
}
let newPromise = promiseWrap(promise)
setTimeout(() => {
// 超过3秒超时
newPromise.abort('请求超时')
}, 3000);
newPromise.then(d=>{
console.log('d',d)
}).catch(err=>{
console.log('err',err)
})
// 使用promises-aplus-tests 测试写的promise是否规范
// 全局安装 cnpm i -g promises-aplus-tests
// 命令行执行 promises-aplus-tests promise.js
// 测试入口 产生延迟对象
myPromise.defer = myPromise.deferred = function () {
let dfd = {}
dfd.promise = new myPromise((resolve,reject)=>{
dfd.resolve = resolve
dfd.reject = reject
})
return dfd
}
// 延迟对象用户
// ![](http://img-repo.poetries.top/images/20210509172817.png)
// promise解决嵌套问题
// function readData(url) {
// let dfd = myPromise.defer()
// fs.readFile(url, 'utf8', function (err,data) {
// if(err) {
// dfd.reject()
// }
// dfd.resolve(data)
// })
// return dfd.promise
// }
// readData().then(d=>{
// return d
// })
module.exports = myPromise
实现 apply 方法
思路: 利用
this
的上下文特性。apply
其实就是改一下参数的问题
Function.prototype.myApply = function(context = window, args) {
// this-->func context--> obj args--> 传递过来的参数
// 在context上加一个唯一值不影响context上的属性
let key = Symbol('key')
context[key] = this; // context为调用的上下文,this此处为函数,将这个函数作为context的方法
// let args = [...arguments].slice(1) //第一个参数为obj所以删除,伪数组转为数组
let result = context[key](...args); // 这里和call传参不一样
// 清除定义的this 不删除会导致context属性越来越多
delete context[key];
// 返回结果
return result;
}
// 使用
function f(a,b){
console.log(a,b)
console.log(this.name)
}
let obj={
name:'张三'
}
f.myApply(obj,[1,2]) //arguments[1]
参考 前端进阶面试题详细解答
实现 apply 方法
apply 原理与 call 很相似,不多赘述
// 模拟 apply
Function.prototype.myapply = function(context, arr) {
var context = Object(context) || window;
context.fn = this;
var result;
if (!arr) {
result = context.fn();
} else {
var args = [];
for (var i = 0, len = arr.length; i < len; i++) {
args.push("arr[" + i + "]");
}
result = eval("context.fn(" + args + ")");
}
delete context.fn;
return result;
};
实现 Array.isArray 方法
Array.myIsArray = function(o) {
return Object.prototype.toString.call(Object(o)) === '[object Array]';
};
console.log(Array.myIsArray([])); // true
对象数组如何去重
根据每个对象的某一个具体属性来进行去重
const responseList = [
{ id: 1, a: 1 },
{ id: 2, a: 2 },
{ id: 3, a: 3 },
{ id: 1, a: 4 },
];
const result = responseList.reduce((acc, cur) => {
const ids = acc.map(item => item.id);
return ids.includes(cur.id) ? acc : [...acc, cur];
}, []);
console.log(result); // -> [ { id: 1, a: 1}, {id: 2, a: 2}, {id: 3, a: 3} ]
实现 JSON.parse
var json = '{"name":"cxk", "age":25}';
var obj = eval("(" + json + ")");
此方法属于黑魔法,极易容易被 xss 攻击,还有一种new Function
大同小异。
实现 find 方法
find
接收一个方法作为参数,方法内部返回一个条件find
会遍历所有的元素,执行你给定的带有条件返回值的函数符合该条件的元素会作为
find
方法的返回值如果遍历结束还没有符合该条件的元素,则返回
undefined
var users = [
{id: 1, name: '张三'},
{id: 2, name: '张三'},
{id: 3, name: '张三'},
{id: 4, name: '张三'}
]
Array.prototype.myFind = function (callback) {
// var callback = function (item, index) { return item.id === 4 }
for (var i = 0; i < this.length; i++) {
if (callback(this[i], i)) {
return this[i]
}
}
}
var ret = users.myFind(function (item, index) {
return item.id === 2
})
console.log(ret)
手写 Promise.race
该方法的参数是 Promise 实例数组, 然后其 then 注册的回调方法是数组中的某一个 Promise 的状态变为 fulfilled 的时候就执行. 因为 Promise 的状态只能改变一次, 那么我们只需要把 Promise.race 中产生的 Promise 对象的 resolve 方法, 注入到数组中的每一个 Promise 实例中的回调函数中即可.
Promise.race = function (args) {
return new Promise((resolve, reject) => {
for (let i = 0, len = args.length; i < len; i++) {
args[i].then(resolve, reject)
}
})
}
手写防抖函数
函数防抖是指在事件被触发 n 秒后再执行回调,如果在这 n 秒内事件又被触发,则重新计时。这可以使用在一些点击请求的事件上,避免因为用户的多次点击向后端发送多次请求。
// 函数防抖的实现
function debounce(fn, wait) {
let timer = null;
return function() {
let context = this,
args = arguments;
// 如果此时存在定时器的话,则取消之前的定时器重新记时
if (timer) {
clearTimeout(timer);
timer = null;
}
// 设置定时器,使事件间隔指定事件后执行
timer = setTimeout(() => {
fn.apply(context, args);
}, wait);
};
}
实现 every 方法
Array.prototype.myEvery=function(callback, context = window){
var len=this.length,
flag=true,
i = 0;
for(;i < len; i++){
if(!callback.apply(context,[this[i], i , this])){
flag=false;
break;
}
}
return flag;
}
// var obj = {num: 1}
// var aa=arr.myEvery(function(v,index,arr){
// return v.num>=12;
// },obj)
// console.log(aa)
实现数组扁平化 flat 方法
题目描述: 实现一个方法使多维数组变成一维数组
let ary = [1, [2, [3, [4, 5]]], 6];
let str = JSON.stringify(ary);
第 0 种处理:直接的调用
arr_flat = arr.flat(Infinity);
第一种处理
ary = str.replace(/(\[|\])/g, '').split(',');
第二种处理
str = str.replace(/(\[\]))/g, '');
str = '[' + str + ']';
ary = JSON.parse(str);
第三种处理:递归处理
let result = [];
let fn = function(ary) {
for(let i = 0; i < ary.length; i++) }{
let item = ary[i];
if (Array.isArray(ary[i])){
fn(item);
} else {
result.push(item);
}
}
}
第四种处理:用 reduce 实现数组的 flat 方法
function flatten(ary) {
return ary.reduce((pre, cur) => {
return pre.concat(Array.isArray(cur) ? flatten(cur) : cur);
}, []);
}
let ary = [1, 2, [3, 4], [5, [6, 7]]]
console.log(flatten(ary))
第五种处理:能用迭代的思路去实现
function flatten(arr) {
if (!arr.length) return;
while (arr.some((item) => Array.isArray(item))) {
arr = [].concat(...arr);
}
return arr;
}
// console.log(flatten([1, 2, [1, [2, 3, [4, 5, [6]]]]]));
第六种处理:扩展运算符
while (ary.some(Array.isArray)) {
ary = [].concat(...ary);
}
数组去重方法汇总
首先:我知道多少种去重方式
1. 双层 for 循环
function distinct(arr) {
for (let i=0, len=arr.length; i<len; i++) {
for (let j=i+1; j<len; j++) {
if (arr[i] == arr[j]) {
arr.splice(j, 1);
// splice 会改变数组长度,所以要将数组长度 len 和下标 j 减一
len--;
j--;
}
}
}
return arr;
}
思想: 双重
for
循环是比较笨拙的方法,它实现的原理很简单:先定义一个包含原始数组第一个元素的数组,然后遍历原始数组,将原始数组中的每个元素与新数组中的每个元素进行比对,如果不重复则添加到新数组中,最后返回新数组;因为它的时间复杂度是O(n^2)
,如果数组长度很大,效率会很低
2. Array.filter() 加 indexOf/includes
function distinct(a, b) {
let arr = a.concat(b);
return arr.filter((item, index)=> {
//return arr.indexOf(item) === index
return arr.includes(item)
})
}
思想: 利用
indexOf
检测元素在数组中第一次出现的位置是否和元素现在的位置相等,如果不等则说明该元素是重复元素
3. ES6 中的 Set 去重
function distinct(array) {
return Array.from(new Set(array));
}
思想: ES6 提供了新的数据结构 Set,Set 结构的一个特性就是成员值都是唯一的,没有重复的值。
4. reduce 实现对象数组去重复
var resources = [
{ name: "张三", age: "18" },
{ name: "张三", age: "19" },
{ name: "张三", age: "20" },
{ name: "李四", age: "19" },
{ name: "王五", age: "20" },
{ name: "赵六", age: "21" }
]
var temp = {};
resources = resources.reduce((prev, curv) => {
// 如果临时对象中有这个名字,什么都不做
if (temp[curv.name]) {
}else {
// 如果临时对象没有就把这个名字加进去,同时把当前的这个对象加入到prev中
temp[curv.name] = true;
prev.push(curv);
}
return prev
}, []);
console.log("结果", resources);
这种方法是利用高阶函数
reduce
进行去重, 这里只需要注意initialValue
得放一个空数组[],不然没法push
实现 Promise
var PromisePolyfill = (function () {
// 和reject不同的是resolve需要尝试展开thenable对象
function tryToResolve (value) {
if (this === value) {
// 主要是防止下面这种情况
// let y = new Promise(res => setTimeout(res(y)))
throw TypeError('Chaining cycle detected for promise!')
}
// 根据规范2.32以及2.33 对对象或者函数尝试展开
// 保证S6之前的 polyfill 也能和ES6的原生promise混用
if (value !== null &&
(typeof value === 'object' || typeof value === 'function')) {
try {
// 这里记录这次then的值同时要被try包裹
// 主要原因是 then 可能是一个getter, 也也就是说
// 1. value.then可能报错
// 2. value.then可能产生副作用(例如多次执行可能结果不同)
var then = value.then
// 另一方面, 由于无法保证 then 确实会像预期的那样只调用一个onFullfilled / onRejected
// 所以增加了一个flag来防止resolveOrReject被多次调用
var thenAlreadyCalledOrThrow = false
if (typeof then === 'function') {
// 是thenable 那么尝试展开
// 并且在该thenable状态改变之前this对象的状态不变
then.bind(value)(
// onFullfilled
function (value2) {
if (thenAlreadyCalledOrThrow) return
thenAlreadyCalledOrThrow = true
tryToResolve.bind(this, value2)()
}.bind(this),
// onRejected
function (reason2) {
if (thenAlreadyCalledOrThrow) return
thenAlreadyCalledOrThrow = true
resolveOrReject.bind(this, 'rejected', reason2)()
}.bind(this)
)
} else {
// 拥有then 但是then不是一个函数 所以也不是thenable
resolveOrReject.bind(this, 'resolved', value)()
}
} catch (e) {
if (thenAlreadyCalledOrThrow) return
thenAlreadyCalledOrThrow = true
resolveOrReject.bind(this, 'rejected', e)()
}
} else {
// 基本类型 直接返回
resolveOrReject.bind(this, 'resolved', value)()
}
}
function resolveOrReject (status, data) {
if (this.status !== 'pending') return
this.status = status
this.data = data
if (status === 'resolved') {
for (var i = 0; i < this.resolveList.length; ++i) {
this.resolveList[i]()
}
} else {
for (i = 0; i < this.rejectList.length; ++i) {
this.rejectList[i]()
}
}
}
function Promise (executor) {
if (!(this instanceof Promise)) {
throw Error('Promise can not be called without new !')
}
if (typeof executor !== 'function') {
// 非标准 但与Chrome谷歌保持一致
throw TypeError('Promise resolver ' + executor + ' is not a function')
}
this.status = 'pending'
this.resolveList = []
this.rejectList = []
try {
executor(tryToResolve.bind(this), resolveOrReject.bind(this, 'rejected'))
} catch (e) {
resolveOrReject.bind(this, 'rejected', e)()
}
}
Promise.prototype.then = function (onFullfilled, onRejected) {
// 返回值穿透以及错误穿透, 注意错误穿透用的是throw而不是return,否则的话
// 这个then返回的promise状态将变成resolved即接下来的then中的onFullfilled
// 会被调用, 然而我们想要调用的是onRejected
if (typeof onFullfilled !== 'function') {
onFullfilled = function (data) {
return data
}
}
if (typeof onRejected !== 'function') {
onRejected = function (reason) {
throw reason
}
}
var executor = function (resolve, reject) {
setTimeout(function () {
try {
// 拿到对应的handle函数处理this.data
// 并以此为依据解析这个新的Promise
var value = this.status === 'resolved'
? onFullfilled(this.data)
: onRejected(this.data)
resolve(value)
} catch (e) {
reject(e)
}
}.bind(this))
}
// then 接受两个函数返回一个新的Promise
// then 自身的执行永远异步与onFullfilled/onRejected的执行
if (this.status !== 'pending') {
return new Promise(executor.bind(this))
} else {
// pending
return new Promise(function (resolve, reject) {
this.resolveList.push(executor.bind(this, resolve, reject))
this.rejectList.push(executor.bind(this, resolve, reject))
}.bind(this))
}
}
// for prmise A+ test
Promise.deferred = Promise.defer = function () {
var dfd = {}
dfd.promise = new Promise(function (resolve, reject) {
dfd.resolve = resolve
dfd.reject = reject
})
return dfd
}
// for prmise A+ test
if (typeof module !== 'undefined') {
module.exports = Promise
}
return Promise
})()
PromisePolyfill.all = function (promises) {
return new Promise((resolve, reject) => {
const result = []
let cnt = 0
for (let i = 0; i < promises.length; ++i) {
promises[i].then(value => {
cnt++
result[i] = value
if (cnt === promises.length) resolve(result)
}, reject)
}
})
}
PromisePolyfill.race = function (promises) {
return new Promise((resolve, reject) => {
for (let i = 0; i < promises.length; ++i) {
promises[i].then(resolve, reject)
}
})
}
实现 Ajax
步骤
创建
XMLHttpRequest
实例发出 HTTP 请求
服务器返回 XML 格式的字符串
JS 解析 XML,并更新局部页面
不过随着历史进程的推进,XML 已经被淘汰,取而代之的是 JSON。
了解了属性和方法之后,根据 AJAX 的步骤,手写最简单的 GET 请求。
实现 bind 方法
bind
的实现对比其他两个函数略微地复杂了一点,涉及到参数合并(类似函数柯里化),因为bind
需要返回一个函数,需要判断一些边界问题,以下是bind
的实现
bind
返回了一个函数,对于函数来说有两种方式调用,一种是直接调用,一种是通过new
的方式,我们先来说直接调用的方式对于直接调用来说,这里选择了
apply
的方式实现,但是对于参数需要注意以下情况:因为bind
可以实现类似这样的代码f.bind(obj, 1)(2)
,所以我们需要将两边的参数拼接起来最后来说通过
new
的方式,对于new
的情况来说,不会被任何方式改变this
,所以对于这种情况我们需要忽略传入的this
简洁版本
对于普通函数,绑定
this
指向对于构造函数,要保证原函数的原型对象上的属性不能丢失
Function.prototype.myBind = function(context = window, ...args) {
// this表示调用bind的函数
let self = this;
//返回了一个函数,...innerArgs为实际调用时传入的参数
let fBound = function(...innerArgs) {
//this instanceof fBound为true表示构造函数的情况。如new func.bind(obj)
// 当作为构造函数时,this 指向实例,此时 this instanceof fBound 结果为 true,可以让实例获得来自绑定函数的值
// 当作为普通函数时,this 指向 window,此时结果为 false,将绑定函数的 this 指向 context
return self.apply(
this instanceof fBound ? this : context,
args.concat(innerArgs)
);
}
// 如果绑定的是构造函数,那么需要继承构造函数原型属性和方法:保证原函数的原型对象上的属性不丢失
// 实现继承的方式: 使用Object.create
fBound.prototype = Object.create(this.prototype);
return fBound;
}
// 测试用例
function Person(name, age) {
console.log('Person name:', name);
console.log('Person age:', age);
console.log('Person this:', this); // 构造函数this指向实例对象
}
// 构造函数原型的方法
Person.prototype.say = function() {
console.log('person say');
}
// 普通函数
function normalFun(name, age) {
console.log('普通函数 name:', name);
console.log('普通函数 age:', age);
console.log('普通函数 this:', this); // 普通函数this指向绑定bind的第一个参数 也就是例子中的obj
}
var obj = {
name: 'poetries',
age: 18
}
// 先测试作为构造函数调用
var bindFun = Person.myBind(obj, 'poetry1') // undefined
var a = new bindFun(10) // Person name: poetry1、Person age: 10、Person this: fBound {}
a.say() // person say
// 再测试作为普通函数调用
var bindNormalFun = normalFun.myBind(obj, 'poetry2') // undefined
bindNormalFun(12) // 普通函数name: poetry2 普通函数 age: 12 普通函数 this: {name: 'poetries', age: 18}
注意:
bind
之后不能再次修改this
的指向,bind
多次后执行,函数this
还是指向第一次bind
的对象
实现 instanceOf
// 模拟 instanceof
function instance_of(L, R) {
//L 表示左表达式,R 表示右表达式
var O = R.prototype; // 取 R 的显示原型
L = L.__proto__; // 取 L 的隐式原型
while (true) {
if (L === null) return false;
if (O === L)
// 这里重点:当 O 严格等于 L 时,返回 true
return true;
L = L.__proto__;
}
}
还未添加个人签名 2022-07-31 加入
还未添加个人简介
评论