写点什么

《从 0 到 1 学习 Flink》—— Data Source 介绍

用户头像
zhisheng
关注
发布于: 2020 年 05 月 22 日
《从0到1学习Flink》—— Data Source 介绍

前言



Data Sources 是什么呢?就字面意思其实就可以知道:数据来源。



Flink 做为一款流式计算框架,它可用来做批处理,即处理静态的数据集、历史的数据集;也可以用来做流处理,即实时的处理些实时数据流,实时的产生数据流结果,只要数据源源不断的过来,Flink 就能够一直计算下去,这个 Data Sources 就是数据的来源地。



Flink 中你可以使用 StreamExecutionEnvironment.addSource(sourceFunction) 来为你的程序添加数据来源。



Flink 已经提供了若干实现好了的 source functions,当然你也可以通过实现 SourceFunction 来自定义非并行的 source 或者实现 ParallelSourceFunction 接口或者扩展 RichParallelSourceFunction 来自定义并行的 source,



Flink



StreamExecutionEnvironment 中可以使用以下几个已实现的 stream sources,





总的来说可以分为下面几大类:



基于集合



1、fromCollection(Collection) - 从 Java 的 Java.util.Collection 创建数据流。集合中的所有元素类型必须相同。



2、fromCollection(Iterator, Class) - 从一个迭代器中创建数据流。Class 指定了该迭代器返回元素的类型。



3、fromElements(T ...) - 从给定的对象序列中创建数据流。所有对象类型必须相同。



StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
DataStream<Event> input = env.fromElements(
new Event(1, "barfoo", 1.0),
new Event(2, "start", 2.0),
new Event(3, "foobar", 3.0),
...
);



4、fromParallelCollection(SplittableIterator, Class) - 从一个迭代器中创建并行数据流。Class 指定了该迭代器返回元素的类型。



5、generateSequence(from, to) - 创建一个生成指定区间范围内的数字序列的并行数据流。



基于文件



1、readTextFile(path) - 读取文本文件,即符合 TextInputFormat 规范的文件,并将其作为字符串返回。



final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
DataStream<String> text = env.readTextFile("file:///path/to/file");



2、readFile(fileInputFormat, path) - 根据指定的文件输入格式读取文件(一次)。



3、readFile(fileInputFormat, path, watchType, interval, pathFilter, typeInfo) - 这是上面两个方法内部调用的方法。它根据给定的 fileInputFormat 和读取路径读取文件。根据提供的 watchType,这个 source 可以定期(每隔 interval 毫秒)监测给定路径的新数据(FileProcessingMode.PROCESSCONTINUOUSLY),或者处理一次路径对应文件的数据并退出(FileProcessingMode.PROCESSONCE)。你可以通过 pathFilter 进一步排除掉需要处理的文件。



final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
DataStream<MyEvent> stream = env.readFile(
myFormat, myFilePath, FileProcessingMode.PROCESS_CONTINUOUSLY, 100,
FilePathFilter.createDefaultFilter(), typeInfo);



实现:



在具体实现上,Flink 把文件读取过程分为两个子任务,即目录监控和数据读取。每个子任务都由单独的实体实现。目录监控由单个非并行(并行度为1)的任务执行,而数据读取由并行运行的多个任务执行。后者的并行性等于作业的并行性。单个目录监控任务的作用是扫描目录(根据 watchType 定期扫描或仅扫描一次),查找要处理的文件并把文件分割成切分片(splits),然后将这些切分片分配给下游 reader。reader 负责读取数据。每个切分片只能由一个 reader 读取,但一个 reader 可以逐个读取多个切分片。



重要注意:



如果 watchType 设置为 FileProcessingMode.PROCESS_CONTINUOUSLY,则当文件被修改时,其内容将被重新处理。这会打破“exactly-once”语义,因为在文件末尾附加数据将导致其所有内容被重新处理。



如果 watchType 设置为 FileProcessingMode.PROCESS_ONCE,则 source 仅扫描路径一次然后退出,而不等待 reader 完成文件内容的读取。当然 reader 会继续阅读,直到读取所有的文件内容。关闭 source 后就不会再有检查点。这可能导致节点故障后的恢复速度较慢,因为该作业将从最后一个检查点恢复读取。



基于 Socket:



socketTextStream(String hostname, int port) - 从 socket 读取。元素可以用分隔符切分。



StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
DataStream<Tuple2<String, Integer>> dataStream = env
.socketTextStream("localhost", 9999) // 监听 localhost 的 9999 端口过来的数据
.flatMap(new Splitter())
.keyBy(0)
.timeWindow(Time.seconds(5))
.sum(1);



这个在 《从0到1学习Flink》—— Mac 上搭建 Flink 1.6.0 环境并构建运行简单程序入门 文章里用的就是基于 Socket 的 Word Count 程序。



自定义:



addSource - 添加一个新的 source function。例如,你可以 addSource(new FlinkKafkaConsumer011<>(...)) 以从 Apache Kafka 读取数据



说下上面几种的特点吧



1、基于集合:有界数据集,更偏向于本地测试用



2、基于文件:适合监听文件修改并读取其内容



3、基于 Socket:监听主机的 host port,从 Socket 中获取数据



4、自定义 addSource:大多数的场景数据都是无界的,会源源不断的过来。比如去消费 Kafka 某个 topic 上的数据,这时候就需要用到这个 addSource,可能因为用的比较多的原因吧,Flink 直接提供了 FlinkKafkaConsumer011 等类可供你直接使用。你可以去看看 FlinkKafkaConsumerBase 这个基础类,它是 Flink Kafka 消费的最根本的类。



StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
DataStream<KafkaEvent> input = env
.addSource(
new FlinkKafkaConsumer011<>(
parameterTool.getRequired("input-topic"), //从参数中获取传进来的 topic
new KafkaEventSchema(),
parameterTool.getProperties())
.assignTimestampsAndWatermarks(new CustomWatermarkExtractor()));



Flink 目前支持如下图里面常见的 Source:





如果你想自己自定义自己的 Source 呢?



那么你就需要去了解一下 SourceFunction 接口了,它是所有 stream source 的根接口,它继承自一个标记接口(空接口)Function。



SourceFunction 定义了两个接口方法:





1、run : 启动一个 source,即对接一个外部数据源然后 emit 元素形成 stream(大部分情况下会通过在该方法里运行一个 while 循环的形式来产生 stream)。



2、cancel : 取消一个 source,也即将 run 中的循环 emit 元素的行为终止。



正常情况下,一个 SourceFunction 实现这两个接口方法就可以了。其实这两个接口方法也固定了一种实现模板。



比如,实现一个 XXXSourceFunction,那么大致的模板是这样的:(直接拿 FLink 源码的实例给你看看)





最后



本文主要讲了下 Flink 的常见 Source 有哪些并且简单的提了下如何自定义 Source。



关注我



转载请务必注明原创地址为:http://www.54tianzhisheng.cn/2018/10/28/flink-sources/



发布于: 2020 年 05 月 22 日阅读数: 74
用户头像

zhisheng

关注

坑要一个个填,路要一步步走! 2018.05.15 加入

GitChat《Flink 实战与性能优化》专栏作者,公众号(zhisheng) 负责人,http://www.54tianzhisheng.cn/ 博客博主,擅长大数据、Java。

评论

发布
暂无评论
《从0到1学习Flink》—— Data Source 介绍