写点什么

2 种图像增强方法:图像点运算和图像灰度化处理

  • 2022 年 2 月 22 日
  • 本文字数:3606 字

    阅读完需:约 12 分钟

本文分享自华为云社区《[Python从零到壹] 四十三.图像增强及运算篇之图像点运算和图像灰度化处理》,作者:eastmount。

一.图像点运算概念

图像点运算(Point Operation)指对于一幅输入图像,将产生一幅输出图像,输出图像的每个像素点的灰度值由输入像素点决定。点运算实际上是灰度到灰度的映射过程,通过映射变换来达到增强或者减弱图像的灰度。还可以对图像进行求灰度直方图、线性变换、非线性变换以及图像骨架的提取。它与相邻的像素之间没有运算关系,是一种简单和有效的图像处理方法[1]。


图像的灰度变换可以通过有选择的突出图像感兴趣的特征或者抑制图像中不需要的特征,从而改善图像的质量,凸显图像的细节,提高图像的对比度。它也能有效地改变图像的直方图分布,使图像的像素值分布更为均匀[2-3]。它在实际中有很多的应用:

  • 光度学标定

  • 对比度增强

  • 对比度扩展

  • 显示标定

  • 轮廓线确定

设输入图像为 A(x,y),输出图像为 B(x,y),则点运算可以表示为:

图像点运算与几何运算存在差别,不会改变图像内像素点之间的空间位置关系。同时与局部(领域)运算也存在差别,输入像素和输出像素一一对应。

二.图像灰度化处理

图像灰度化是将一幅彩色图像转换为灰度化图像的过程。彩色图像通常包括 R、G、B 三个分量,分别显示出红绿蓝等各种颜色,灰度化就是使彩色图像的 R、G、B 三个分量相等的过程。灰度图像中每个像素仅具有一种样本颜色,其灰度是位于黑色与白色之间的多级色彩深度,灰度值大的像素点比较亮,反之比较暗,像素值最大为 255(表示白色),像素值最小为 0(表示黑色)。


假设某点的颜色由 RGB(R,G,B)组成,常见灰度处理算法如表 11-1 所示:

表 11-1 中 Gray 表示灰度处理之后的颜色,然后将原始 RGB(R,G,B)颜色均匀地替换成新颜色 RGB(Gray,Gray,Gray),从而将彩色图片转化为灰度图像。一种常见的方法是将 RGB 三个分量求和再取平均值,但更为准确的方法是设置不同的权重,将 RGB 分量按不同的比例进行灰度划分。比如人类的眼睛感官蓝色的敏感度最低,敏感最高的是绿色,因此将 RGB 按照 0.299、0.587、0.144 比例加权平均能得到较合理的灰度图像,如公式 11-2 所示[4-6]。

在日常生活中,我们看到的大多数彩色图像都是 RGB 类型,但是在图像处理过程中,常常需要用到灰度图像、二值图像、HSV、HSI 等颜色,OpenCV 提供了 cvtColor()函数实现这些功能。其函数原型如下所示:

  • dst = cv2.cvtColor(src, code[, dst[, dstCn]])

  • – src 表示输入图像,需要进行颜色空间变换的原图像

  • – dst 表示输出图像,其大小和深度与 src 一致

  • – code 表示转换的代码或标识

  • – dstCn 表示目标图像通道数,其值为 0 时,则有 src 和 code 决定


该函数的作用是将一个图像从一个颜色空间转换到另一个颜色空间,其中,RGB 是指 Red、Green 和 Blue,一副图像由这三个通道(channel)构成;Gray 表示只有灰度值一个通道;HSV 包含 Hue(色调)、Saturation(饱和度)和 Value(亮度)三个通道。


在 OpenCV 中,常见的颜色空间转换标识包括 CV_BGR2BGRA、CV_RGB2GRAY、CV_GRAY2RGB、CV_BGR2HSV、CV_BGR2XYZ、CV_BGR2HLS 等。下面是调用 cvtColor()函数将图像进行灰度化处理的代码。

# -*- coding: utf-8 -*-# By:Eastmountimport cv2  import numpy as np  
#读取原始图片src = cv2.imread('luo.png')
#图像灰度化处理grayImage = cv2.cvtColor(src,cv2.COLOR_BGR2GRAY)
#显示图像cv2.imshow("src", src)cv2.imshow("result", grayImage)
#等待显示cv2.waitKey(0)cv2.destroyAllWindows()
复制代码

输出结果如图 11-1 所示,左边是彩色的“小珞珞”原图,右边是将彩色图像进行灰度化处理之后的灰度图。其中,灰度图将一个像素点的三个颜色变量设置为相等(R=G=B),此时该值称为灰度值。

同样,可以调用如下核心代码将彩色图像转换为 HSV 颜色空间,其输出结果如图 11-2 所示。

  • grayImage = cv2.cvtColor(src, cv2.COLOR_BGR2HSV)

下面代码对比了九种常见的颜色空间,包括 BGR、RGB、GRAY、HSV、YCrCb、HLS、XYZ、LAB 和 YUV,并循环显示处理后的图像。

# -*- coding: utf-8 -*-# By:Eastmountimport cv2  import numpy as np  import matplotlib.pyplot as plt
#读取原始图像img_BGR = cv2.imread('luo.png')
img_RGB = cv2.cvtColor(img_BGR, cv2.COLOR_BGR2RGB) #BGR转换为RGBimg_GRAY = cv2.cvtColor(img_BGR, cv2.COLOR_BGR2GRAY) #灰度化处理img_HSV = cv2.cvtColor(img_BGR, cv2.COLOR_BGR2HSV) #BGR转HSVimg_YCrCb = cv2.cvtColor(img_BGR, cv2.COLOR_BGR2YCrCb) #BGR转YCrCbimg_HLS = cv2.cvtColor(img_BGR, cv2.COLOR_BGR2HLS) #BGR转HLSimg_XYZ = cv2.cvtColor(img_BGR, cv2.COLOR_BGR2XYZ) #BGR转XYZimg_LAB = cv2.cvtColor(img_BGR, cv2.COLOR_BGR2LAB) #BGR转LABimg_YUV = cv2.cvtColor(img_BGR, cv2.COLOR_BGR2YUV) #BGR转YUV
#调用matplotlib显示处理结果titles = ['BGR', 'RGB', 'GRAY', 'HSV', 'YCrCb', 'HLS', 'XYZ', 'LAB', 'YUV'] images = [img_BGR, img_RGB, img_GRAY, img_HSV, img_YCrCb, img_HLS, img_XYZ, img_LAB, img_YUV] for i in range(9): plt.subplot(3, 3, i+1), plt.imshow(images[i], 'gray') plt.title(titles[i]) plt.xticks([]),plt.yticks([]) plt.show()
复制代码

其运行结果如图 11-3 所示:

三.基于像素操作的图像灰度化处理

前面讲述了调用 OpenCV 中 cvtColor()函数实现图像灰度化的处理,接下来讲解基于像素操作的图像灰度化处理方法,主要是最大值灰度处理、平均灰度处理和加权平均灰度处理方法。

1.最大值灰度处理方法

该方法的灰度值等于彩色图像 R、G、B 三个分量中的最大值,公式如下:

其方法灰度化处理后的灰度图亮度很高,实现代码如下。

# -*- coding: utf-8 -*-# By:Eastmountimport cv2  import numpy as np  import matplotlib.pyplot as plt
#读取原始图像img = cv2.imread('luo.png')
#获取图像高度和宽度height = img.shape[0]width = img.shape[1]
#创建一幅图像grayimg = np.zeros((height, width, 3), np.uint8)
#图像最大值灰度处理for i in range(height): for j in range(width): #获取图像R G B最大值 gray = max(img[i,j][0], img[i,j][1], img[i,j][2]) #灰度图像素赋值 gray=max(R,G,B) grayimg[i,j] = np.uint8(gray)
#显示图像cv2.imshow("src", img)cv2.imshow("gray", grayimg)#等待显示cv2.waitKey(0)cv2.destroyAllWindows()
复制代码

其输出结果如图 11-4 所示,其处理效果的灰度偏亮。

2.平均灰度处理方法

该方法的灰度值等于彩色图像 R、G、B 三个分量灰度值的求和平均值,其计算公式如公式(11-4)所示:

平均灰度处理方法实现代码如下。

# -*- coding: utf-8 -*-# By:Eastmountimport cv2  import numpy as np  import matplotlib.pyplot as plt
#读取原始图像img = cv2.imread('luo.png')
#获取图像高度和宽度height = img.shape[0]width = img.shape[1]
#创建一幅图像grayimg = np.zeros((height, width, 3), np.uint8)
#图像平均灰度处理方法for i in range(height): for j in range(width): #灰度值为RGB三个分量的平均值 gray = (int(img[i,j][0]) + int(img[i,j][1]) + int(img[i,j][2])) / 3 grayimg[i,j] = np.uint8(gray)
#显示图像cv2.imshow("src", img)cv2.imshow("gray", grayimg)
#等待显示cv2.waitKey(0)cv2.destroyAllWindows()
复制代码


其输出结果如图 11-5 所示:

3.加权平均灰度处理方法

该方法根据色彩重要性,将三个分量以不同的权值进行加权平均。由于人眼对绿色的敏感最高,对蓝色敏感最低,因此,按下式对 RGB 三分量进行加权平均能得到较合理的灰度图像。

加权平均灰度处理方法实现代码如下所示:

# -*- coding: utf-8 -*-# By:Eastmountimport cv2  import numpy as np  import matplotlib.pyplot as plt
#读取原始图像img = cv2.imread('luo.png')
#获取图像高度和宽度height = img.shape[0]width = img.shape[1]
#创建一幅图像grayimg = np.zeros((height, width, 3), np.uint8)
#图像平均灰度处理方法for i in range(height): for j in range(width): #灰度加权平均法 gray = 0.30 * img[i,j][0] + 0.59 * img[i,j][1] + 0.11 * img[i,j][2] grayimg[i,j] = np.uint8(gray)
#显示图像cv2.imshow("src", img)cv2.imshow("gray", grayimg)
#等待显示cv2.waitKey(0)cv2.destroyAllWindows()
复制代码

其输出结果如图 11-6 所示:

四.总结

本文主要讲解图像点运算的灰度化处理,详细介绍常用的灰度化处理方法,并分享了图像颜色空间相互转换,以及三种灰度转换算法的实现。通过灰度处理,我们能有效将彩色图像转换为灰度图,为后续的边缘提取等处理提供支撑,也可能实现图像处理软件最简单的彩色图转黑白的效果,希望对您有所帮助。


点击关注,第一时间了解华为云新鲜技术~


发布于: 刚刚阅读数: 3
用户头像

提供全面深入的云计算技术干货 2020.07.14 加入

华为云开发者社区,提供全面深入的云计算前景分析、丰富的技术干货、程序样例,分享华为云前沿资讯动态,方便开发者快速成长与发展,欢迎提问、互动,多方位了解云计算! 传送门:https://bbs.huaweicloud.com/

评论

发布
暂无评论
2种图像增强方法:图像点运算和图像灰度化处理