写点什么

DolphinDB 与 Pandas 对于大文本文件处理的性能对比

用户头像
DolphinDB
关注
发布于: 2020 年 12 月 10 日
DolphinDB与Pandas对于大文本文件处理的性能对比

DolphinDB是一款高性能的分布式时序数据库。它集成了功能强大的编程语言和高容量高速度的流数据分析系统,为海量数据(特别是时间序列数据)的快速存储、检索、分析及计算提供一站式解决方案。



Pandas是Python的一个包,最初被作为金融数据分析工具而开发,为时间序列分析提供了很好的支持。



DolphinDB是一个分布式系统,但也可以作为工作站使用。DolphinDB和Pandas都能够处理大文本文件,哪个的表现更出色呢?在处理大文本文件时,我们最关心的两个因素是性能和内存占用情况。因此,我们将从这两方面对DolphinDB和Pandas进行对比。



本次测试使用的硬件和操作系统如下:



Dell PowerEdge R830 服务器



内存:1024GB



CPU:E5-4640 v4 48 核 2.1GHZ



操作系统:Fedora27



RAID 0:8X1.2TB 10000 RMP HDD



DolphinDB提供了修改内存使用限制的配置项,所以我们把内存限制设置为128G,24核,这更符合大部分实际用户的服务器配置。而在Pandas中,我们无法对内存使用进行限制。



  1. 数据生成



我们在 DolphinDB database 中生成一个40G文本文件,包含了16列,一共有390,000,000行数据。生成数据的脚本如下:



n=390000000
workDir = "/data"
if(!exists(workDir)) mkdir(workDir)
sample=table(rand(string('A'..'Z') + "XXXX",n) as sym, 2000.01.01+rand(365,n) as date, 10.0+rand(2.0,n) as price1, 100.0+rand(20.0,n) as price2, 1000.0+rand(200.0,n) as price3, 10000.0+rand(2000.0,n) as price4, 10000.0+rand(3000.0,n) as price5, 10000.0+rand(4000.0,n) as price6, rand(10,n) as qty1, rand(100,n) as qty2, rand(1000,n) as qty3, rand(10000,n) as qty4, rand(10000,n) as qty5, rand(10000,n) as qty6)
sample.saveText(workDir + "/trades_40G.txt")



2. 性能和内存占用比较



计算时间:



在DolphinDB中使用timer函数,在Pandas中使用%time。



内存占用:



我们可以使用Linux命令htop来监视DolphinDB和Pandas的内存占用情况。我们不仅记录了任务执行前后的内存占用,还记录了内存占用的峰值。



3. 测试结果和结论



我们主要测试了文本加载和其他基本操作,如添加计算列、分组、更新和使用窗口函数增加列。测试脚本见附录。测试结果如下表所示。为了减少特殊值的影响,我们把每个测试脚本都执行了10次,表中的时间是10次的执行总用时。





从测试结果中,我们可以得出以下结论,DolphinDB在性能上比Pandas快1~2个数量级(10~100倍),并且内存占用通常小于pandas的1/2,DolphinDB内存占用的最大值仅为pandas的1/3到1/2。从结果可以看出,在pandas中对于一些特定任务如增加一列数据,内存占用在执行前后不会发生变化,这是因为pandas会预先分配一定的内存供后续使用。



附录1. 测试脚本





发布于: 2020 年 12 月 10 日阅读数: 20
用户头像

DolphinDB

关注

速度即价值 2020.12.09 加入

DolphinDB以高吞吐,低延迟,轻型易用,综合拥有成本低等优势著称,在国内外时序数据库领域,尤其是量化金融、工业物联网、物联网等领域拥有广阔的发展前景。

评论

发布
暂无评论
DolphinDB与Pandas对于大文本文件处理的性能对比