Linux 内存泄露案例分析和内存管理分享
作者:京东科技 李遵举
一、问题
近期我们运维同事接到线上 LB(负载均衡)服务内存报警,运维同事反馈说 LB 集群有部分机器的内存使用率超过 80%,有的甚至超过 90%,而且内存使用率还再不停的增长。接到内存报警的消息,让整个团队都比较紧张,我们团队负责的 LB 服务是零售、物流、科技等业务服务的流量入口,承接上万个服务的流量转发,一旦有故障影响业务服务比较多,必须马上着手解决内存暴涨的问题。目前只是内存报警,暂时不影响业务,先将内存使用率 90%以上的 LB 服务下线,防止内存过高导致 LB 服务崩溃,影响业务,运维同事密切关注相关的内存报警的消息。
二、排查过程
经过开发同学通过 cat /proc/meminfo 查看 Slab 的内核内存可能有泄漏。
通过 slabtop 命令分析 slab 发现内核中 dentry 对象占比高,考虑到 dentry 对象跟文件有关,Linux 中一切皆可以为文件,这个可能跟 socket 文件有关,通过进一步排查发现 LB 服务上有个 curl 发送的 HTTPS 探测脚本,这个脚本存在 dentry 对象泄漏,并且在 curl 论坛上找到一篇文章确认了这个问题,这个文章说明了 curl-7.19.7 版本在发送 HTTPS 请求时,curl 依赖的 NSS 库存在 dentry 泄漏的 bug,我查看一下我们 curl 版本就是 7.19.7,问题终于真相大白了!!!
文章中介绍可以设置环境变量 NSS_SDB_USE_CACHE 修复这个 bug,我们验证通过了这个解决方案。
三、解决方案
1、目前先将探测脚本停止,在业务流量低峰时将内存使用率超过 90%的服务先通过 drop_caches 清理一下缓存。
2、等大促过后,探测脚本中设置环境变量 NSS_SDB_USE_CACHE,彻底修复这个问题。
四、复盘和总结
这次内存暴涨的问题根本原因是 curl-7.19.7 依赖的 NSS 库存在 dentry 泄漏的 bug 导致的,探测脚本只是将这个问题暴露出来。这次问题由 Linux 内存泄漏引发的问题,因此以点带面再次系统学习一下 Linux 内存管理的知识非常有必要,对我们以后排查内存暴涨的问题非常有帮助。
1)Linux 内存寻址
Linux 内核主要通过虚拟内存管理进程的地址空间,内核进程和用户进程都只会分配虚拟内存,不会分配物理内存,通过内存寻址将虚拟内存与物理内存做映射。Linux 内核中有三种地址,
a、逻辑地址,每个逻辑地址都由一段(segment)和偏移量(offset)组成,偏移量指明了从段开始的地方到实际地址之间的距离。
b、线性地址,又称虚拟地址,是一个 32 个无符号整数,32 位机器内存高达 4GB,通常用十六进制数字表示,Linux 进程的内存一般说的都是这个内存。
c、物理地址,用于内存芯片级内存单元寻址。它们与从 CPU 的地址引脚发送到内存总线上的电信号对应。
Linux 中的内存控制单元(MMU)通过一种称为分段单元(segmentation unit)的硬件电路把一个逻辑地址转换成线性地址,接着,第二个称为分页单元(paging unit)的硬件电路把线性地址转换成一个物理地址。
2)Linux 分页机制
分页单元把线性地址转换成物理地址。线性地址被分成以固定长度为单位的组,称为页(page)。页内部连续的线性地址被映射到连续的物理地址中。一般"页"既指一组线性地址,又指包含这组地址中的数据。分页单元把所有的 RAM 分成固定长度的页框(page frame),也成物理页。每一页框包含一个页(page),也就是说一个页框的长度与一个页的长度一致。页框是主存的一部分,因此也是一个存储区域。区分一页和一个页框是很重要的,前者只是一个数据块,可以存放任何页框或者磁盘中。把线性地址映射到物理地址的数据结构称为页表(page table)。页表存放在主存中,并在启用分页单元之前必须有内核对页表进行适当的初始化。
x86_64 的 Linux 内核采用 4 级分页模型,一般一页 4K,4 种页表:
a、页全局目录
b、页上级目录
c、页中间目录
d、页表
页全局目录包含若干页上级目录,页上级目录又依次包含若干页中间目录的地址,而页中间目录又包含若干页表的地址。每个页表项指向一个页框。线性地址被分成 5 部分。
3)NUMA 架构
随着 CPU 进入多核时代,多核 CPU 通过一条数据总线访问内存延迟很大,因此 NUMA 架构应运而生,NUMA 架构全称为非一致性内存架构 (Non Uniform Memory Architecture),系统的物理内存被划分为几个节点(node),每个 node 绑定不同的 CPU 核,本地 CPU 核直接访问本地内存 node 节点延迟最小。
可以通过 lscpu 命令查看 NUMA 与 CPU 核的关系。
4)伙伴关系算法
Linux 内核通过著名伙伴关系算法为分配一组连续的页框而建立一种健壮、稳定的内存分配策略,是内核中一种内存分配器,并解决了内存管理外碎片的问题,外碎片是指频繁地请求和释放不同大小的一组连续页框,必然导致在已分配的页框的块分散了许多小块的空闲页框。
5)Slab 机制
slab 机制的核心思想是以对象的观点来管理内存,主要是为了解决内部碎片,内部碎片是由于采用固定大小的内存分区,即以固定的大小块为单位来分配,采用这种方法,进程所分配的内存可能会比所需要的大,这多余的部分便是内部碎片。slab 也是内核中一种内存分配器,slab 分配器基于对象进行管理的,所谓的对象就是内核中的数据结构(例如:task_struct,file_struct 等)。相同类型的对象归为一类,每当要申请这样一个对象时,slab 分配器就从一个 slab 列表中分配一个这样大小的单元出去,而当要释放时,将其重新保存在该列表中,而不是直接返回给伙伴系统,从而避免内部碎片。上面中说到的 dentry 对象就是通过 slab 分配器分配的一种对象。
slab 和伙伴系统是上下级的调用关系,伙伴关系按照页管理内存,slab 按照字节管理,slab 先从伙伴系统获取数个页的内存,然后切成分成固定的小块(称为 object),然后再按照声明的对象数据结构分配对象。
6)进程内存分布
所有进程都必须占用一定数量的内存,这些内存用来存放从磁盘载入的程序代码,或存放来自用户输入的数据等。内存可以提前静态分配和统一回收,也可以按需动态分配和回收。对于普通进程对应的内存空间包含 5 种不同的数据区:
a、代码段(text):程序代码在内存中的映射,存放函数体的二进制代码,通常用于存放程序执行代码(即 CPU 执行的机器指令)。
b、数据段(data):存放程序中已初始化且初值不为 0 的全局变量和静态局部变量。数据段属于静态内存分配(静态存储区),可读可写。
c、BSS 段(bss):未初始化的全局变量和静态局部变量。
d、堆(heap):动态分配的内存段,大小不固定,可动态扩张(malloc 等函数分配内存),或动态缩减(free 等函数释放)。
e、栈(stack):存放临时创建的局部变量。
Linux 内核是操作系统中优先级最高的,内核函数申请内存必须及时分配适当的内存,用户态进程申请内存被认为是不紧迫的,内核尽量推迟给用户态的进程动态分配内存。
a、请求调页,推迟到进程要访问的页不在 RAM 中时为止,引发一个缺页异常。
b、写时复制(COW),父、子进程共享页框而不是复制页框,但是共享页框不能被修改,只有当父/子进程试图改写共享页框时,内核才将共享页框复制一个新的页框并标记为可写。
7)Linux 内存检测工具
a、free 命令可以监控系统内存
b、top 命令查看系统内存以及进程内存
•VIRT
Virtual Memory Size (KiB):进程使用的所有虚拟内存,包括代码(code)、数据(data)、共享库(shared libraries),以及被换出(swap out)到交换区和映射了(map)但尚未使用(未载入实体内存)的部分。
•RES
Resident Memory Size (KiB):进程所占用的所有实体内存(physical memory),不包括被换出到交换区的部分。
•SHR
Shared Memory Size (KiB):进程可读的全部共享内存,并非所有部分都包含在 RES
中。它反映了可能被其他进程共享的内存部分。
c、smaps 文件
cat /proc/$pid/smaps 查看某进程虚拟内存空间的分布情况
d、vmstat
vmstat 是 Virtual Meomory Statistics(虚拟内存统计)的缩写,可实时动态监视操作系统的虚拟内存、进程、CPU 活动。
e、meminfo 文件
Linux 系统中/proc/meminfo 这个文件用来记录了系统内存使用的详细情况。
总结部分中一些内容来源于《深入理解 Linux 内核》,一些内容根据个人理解写出的,有不对地方欢迎指正,部分图片来源于网络
版权声明: 本文为 InfoQ 作者【京东科技开发者】的原创文章。
原文链接:【http://xie.infoq.cn/article/cb6822cfd3f5fe2466e7854d2】。文章转载请联系作者。
评论