基于 Calcite 的分布式多数据源查询
- 2022 年 1 月 26 日
本文字数:6053 字
阅读完需:约 20 分钟

在本文中,我们将实践 GBase8s 和 MySQL 的跨数据源联合查询,案例中 MySQL 数据源中存放商品信息,GBase8s 数据源中存放订单信息。 整体架构如下,
好了,我们开始吧。
环境准备
GBase8s
安装镜像 docker pull liaosnet/gbase8s启动容器 docker run -itd -p 19088:9088 liaosnet/gbase8s容器基本信息:
JDBC JAR:/home/gbase/gbasedbtjdbc_3.3.0_2.jar类名:com.gbasedbt.jdbc.DriverURL:jdbc:gbasedbt-sqli://IPADDR:19088/testdb:GBASEDBTSERVER=gbase01;DB_LOCALE=zh_CN.utf8;CLIENT_LOCALE=zh_CN.utf8;IFX_LOCK_MODE_WAIT=30;用户:gbasedbt密码:GBase123其中:IPADDR为docker所在机器的IP地址,同时需要放通19088端口。
MySQL
安装镜像 docker pull liaosnet/gbase8s启动容器 docker run -p 3306:3306 --name mysql -e MYSQL_ROOT_PASSWORD=dafei1288 -d mysql
数据准备
GBase8s
CREATE TABLE order_table ( oid INTEGER NOT NULL, iid INTEGER, icount INTEGER, PRIMARY KEY (oid) CONSTRAINT order_table_pk);
INSERT INTO order_table (oid, iid, icount) VALUES(1, 1, 10);INSERT INTO order_table (oid, iid, icount) VALUES(2, 3, 30);
MySQL
create table item( i_id int auto_increment primary key, catalog varchar(20) null, pname varchar(20) null, price float null, constraint item_i_id_uindex unique (i_id));
INSERT INTO test.item (i_id, catalog, pname, price) VALUES (1, '游戏', '大航海时代IV', 300);INSERT INTO test.item (i_id, catalog, pname, price) VALUES (2, '游戏', '马车8', 300);INSERT INTO test.item (i_id, catalog, pname, price) VALUES (3, '食品', '青椒豆腐乳西瓜', 20);
工程准备
创建 maven 工程,目录如下图所示:
添加依赖
<?xml version="1.0" encoding="UTF-8"?><project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"> <modelVersion>4.0.0</modelVersion>
<groupId>org.example</groupId> <artifactId>calcite_multi_database</artifactId> <version>1.0-SNAPSHOT</version>
<properties> <maven.compiler.source>17</maven.compiler.source> <maven.compiler.target>17</maven.compiler.target> </properties> <dependencies> <dependency> <groupId>org.apache.calcite</groupId> <artifactId>calcite-core</artifactId> <version>1.29.0</version> </dependency> <dependency> <groupId>mysql</groupId> <artifactId>mysql-connector-java</artifactId> <version>8.0.28</version> </dependency> <dependency> <groupId>com.google.code.gson</groupId> <artifactId>gson</artifactId> <version>2.8.9</version> </dependency> <dependency> <groupId>gbase</groupId> <artifactId>gbasedbt</artifactId> <version>330</version> <scope>system</scope> <systemPath>${project.basedir}/libs/gbasedbtjdbc_3.3.0_2_36477d.jar</systemPath> </dependency> </dependencies></project>
添加数据源配置文件 multiSource.json
{ "defaultSchema": "gbasedbt", "schemas": [ { "factory": "org.apache.calcite.adapter.jdbc.JdbcSchema$Factory", "name": "mysql", "operand": { "jdbcDriver": "com.mysql.cj.jdbc.Driver", "jdbcUrl": "jdbc:mysql://localhost:3306/test", "jdbcUser": "root", "jdbcPassword": "dafei1288" }, "type": "custom" }, { "factory": "org.apache.calcite.adapter.jdbc.JdbcSchema$Factory", "name": "gbasedbt", "operand": { "jdbcDriver": "com.gbasedbt.jdbc.Driver", "jdbcUrl": "jdbc:gbasedbt-sqli://localhost:19088/testdb:GBASEDBTSERVER=gbase01;DB_LOCALE=zh_CN.utf8;CLIENT_LOCALE=zh_CN.utf8;IFX_LOCK_MODE_WAIT=30;", "jdbcUser": "gbasedbt", "jdbcPassword": "GBase123" }, "type": "custom" } ], "version": "1.0"}
创建执行程序 MultiSource
使用上面的配置文件,创建 Calcite Jdbc 链接
String filepath = "E:\\working\\GBase\\writting\\calcite_multi_database_select\\calcite_multi_database\\src\\main\\resources\\multiSource.json";Properties config = new Properties();config.put("model",filepath);config.put("lex", "MYSQL");
这里 config.put("lex", "MYSQL"); 用于解析外层 SQL ,所以必须保留。使用查询语句 SELECT o.oid,o.iid,o.icount,i.catalog,i.pname,i.price FROM gbasedbt.order_table AS o join mysql.item AS i on o.iid = i.i_id 进行数据查询。
除了执行结果,其实我们也会对执行的逻辑计划感兴趣,那么我们来看看如何将该 SQL 的逻辑计划打印出来
public static void printLogicPlan(String modelPath , String sql) throws Exception{
String modelJsonStr = Files.readAllLines(Paths.get(modelPath)).stream().collect(Collectors.joining("\n")); HashMap map = new Gson().fromJson(modelJsonStr, HashMap.class); List<Map> schemas = (List<Map>) map.get("schemas");
SchemaPlus rootSchema = Frameworks.createRootSchema(true); Schema gbasedbt = JdbcSchema.create(rootSchema, "gbasedbt" , (Map<String,Object>)schemas.get(1).get("operand")); Schema mysql = JdbcSchema.create(rootSchema, "mysql" , (Map<String,Object>)schemas.get(0).get("operand")); rootSchema.add("gbasedbt",gbasedbt); rootSchema.add("mysql",mysql);
SqlParser.Config insensitiveParser = SqlParser.configBuilder() .setCaseSensitive(false) .build();
FrameworkConfig config = Frameworks.newConfigBuilder() .parserConfig(insensitiveParser) .defaultSchema(rootSchema) .build();
Planner planner = Frameworks.getPlanner(config); SqlNode sqlNode = planner.parse(sql); SqlNode sqlNodeValidated = planner.validate(sqlNode); RelRoot relRoot = planner.rel(sqlNodeValidated); RelNode relNode = relRoot.project();
System.out.println(sqlNode.toSqlString(MysqlSqlDialect.DEFAULT)); System.out.println(); System.out.println(relNode.explain());}
下面是逻辑计划打印的结果,我们不难看出,这里是使用了 2 个全表扫描,然后再通过 Join 算子,然后进行 project算子的。其实这个执行不能说效率很高吧,只能说非常慢,如果想做优化,我们以后再开一篇文章。
LogicalProject(OID=[$0], IID=[$1], ICOUNT=[$2], CATALOG=[$4], PNAME=[$5], PRICE=[$6]) LogicalJoin(condition=[=($1, $3)], joinType=[inner]) JdbcTableScan(table=[[gbasedbt, order_table]]) JdbcTableScan(table=[[mysql, item]])
SQL 查询结果如下
oid iid icount catalog pname price 1 1 10 游戏 大航海时代IV 300.0 2 3 30 食品 青椒豆腐乳西瓜 20.0
执行截图
完整代码清单:
package wang.datahub;
import com.google.gson.Gson;import org.apache.calcite.adapter.jdbc.JdbcSchema;import org.apache.calcite.rel.RelNode;import org.apache.calcite.rel.RelRoot;import org.apache.calcite.rel.RelWriter;import org.apache.calcite.rel.externalize.RelWriterImpl;import org.apache.calcite.schema.Schema;import org.apache.calcite.schema.SchemaPlus;import org.apache.calcite.sql.SqlExplainLevel;import org.apache.calcite.sql.SqlNode;import org.apache.calcite.sql.dialect.MysqlSqlDialect;import org.apache.calcite.sql.parser.SqlParser;import org.apache.calcite.tools.FrameworkConfig;import org.apache.calcite.tools.Frameworks;import org.apache.calcite.tools.Planner;
import java.io.PrintWriter;import java.nio.file.Files;import java.nio.file.Paths;import java.sql.*;import java.util.HashMap;import java.util.List;import java.util.Map;import java.util.Properties;import java.util.stream.Collectors;
public class MultiSource { public static void main(String[] args) throws Exception{ String filepath = "E:\\working\\GBase\\writting\\calcite_multi_database_select\\calcite_multi_database\\src\\main\\resources\\multiSource.json"; Properties config = new Properties(); config.put("model",filepath); config.put("lex", "MYSQL"); String sql = "SELECT o.oid,o.iid,o.icount,i.catalog,i.pname,i.price FROM gbasedbt.order_table AS o join mysql.item AS i on o.iid = i.i_id";
try (Connection con = DriverManager.getConnection("jdbc:calcite:", config)) { try (Statement stmt = con.createStatement()) { try (ResultSet rs = stmt.executeQuery(sql)) { //打印逻辑计划 printLogicPlan(filepath,sql); //打印查询结果 printRs(rs); } } }
}
public static void printRs(ResultSet rs) throws Exception { ResultSetMetaData rsmd = rs.getMetaData(); int count = rsmd.getColumnCount();
for(int i = 1; i <= count; i++){ System.out.print(rsmd.getColumnName(i)+"\t"); } System.out.println();
while(rs.next()){ for(int i = 1; i <= count; i++){ System.out.print(rs.getString(i)+"\t"); } System.out.println(); } }
public static void printLogicPlan(String modelPath , String sql) throws Exception{
String modelJsonStr = Files.readAllLines(Paths.get(modelPath)).stream().collect(Collectors.joining("\n")); HashMap map = new Gson().fromJson(modelJsonStr, HashMap.class); List<Map> schemas = (List<Map>) map.get("schemas");
SchemaPlus rootSchema = Frameworks.createRootSchema(true); Schema gbasedbt = JdbcSchema.create(rootSchema, "gbasedbt" , (Map<String,Object>)schemas.get(1).get("operand")); Schema mysql = JdbcSchema.create(rootSchema, "mysql" , (Map<String,Object>)schemas.get(0).get("operand")); rootSchema.add("gbasedbt",gbasedbt); rootSchema.add("mysql",mysql);
SqlParser.Config insensitiveParser = SqlParser.configBuilder() .setCaseSensitive(false) .build();
FrameworkConfig config = Frameworks.newConfigBuilder() .parserConfig(insensitiveParser) .defaultSchema(rootSchema) .build();
Planner planner = Frameworks.getPlanner(config); SqlNode sqlNode = planner.parse(sql); SqlNode sqlNodeValidated = planner.validate(sqlNode); RelRoot relRoot = planner.rel(sqlNodeValidated); RelNode relNode = relRoot.project();
System.out.println(sqlNode.toSqlString(MysqlSqlDialect.DEFAULT)); System.out.println(); System.out.println(relNode.explain()); }}
好了,现在我们初步完成了基于 GBase8s 的跨数据源查询工作,下一篇文章我们来说说查询优化。提前祝广大读者朋友,新春快乐,虎虎生威 ...
版权声明: 本文为 InfoQ 作者【尹千觞】的原创文章。
原文链接:【http://xie.infoq.cn/article/c775bc91fb382323d23bf35ea】。文章转载请联系作者。
尹千觞
还未添加个人签名 2018.04.27 加入
还未添加个人简介











评论